This commit is contained in:
2025-12-19 20:38:40 +08:00
commit 73c828d99b
83 changed files with 13068 additions and 0 deletions

1
.build_session Normal file
View File

@@ -0,0 +1 @@
20251216111638

1
.build_timestamp Normal file
View File

@@ -0,0 +1 @@
2025-12-16 11:16:38

214
.clang-format Normal file
View File

@@ -0,0 +1,214 @@
# 语言: None, Cpp, Java, JavaScript, ObjC, Proto, TableGen, TextProto
Language: Cpp
# BasedOnStyle: LLVM
# 访问说明符(public、private等)的偏移
AccessModifierOffset: -4
# 开括号(开圆括号、开尖括号、开方括号)后的对齐: Align, DontAlign, AlwaysBreak(总是在开括号后换行)
AlignAfterOpenBracket: Align
# 连续赋值时,对齐所有等号
AlignConsecutiveAssignments: false
# 连续声明时,对齐所有声明的变量名
AlignConsecutiveDeclarations: false
# 右对齐逃脱换行(使用反斜杠换行)的反斜杠
AlignEscapedNewlines: Right
# 水平对齐二元和三元表达式的操作数
AlignOperands: true
# 对齐连续的尾随的注释
AlignTrailingComments: true
# 允许函数声明的所有参数在放在下一行
AllowAllParametersOfDeclarationOnNextLine: true
# 允许短的块放在同一行
AllowShortBlocksOnASingleLine: true
# 允许短的case标签放在同一行
AllowShortCaseLabelsOnASingleLine: true
# 允许短的函数放在同一行: None, InlineOnly(定义在类中), Empty(空函数), Inline(定义在类中,空函数), All
AllowShortFunctionsOnASingleLine: Inline
# 允许短的if语句保持在同一行
AllowShortIfStatementsOnASingleLine: true
# 允许短的循环保持在同一行
AllowShortLoopsOnASingleLine: true
# 总是在返回类型后换行: None, All, TopLevel(顶级函数,不包括在类中的函数),
# AllDefinitions(所有的定义,不包括声明), TopLevelDefinitions(所有的顶级函数的定义)
AlwaysBreakAfterReturnType: None
# 总是在多行string字面量前换行
AlwaysBreakBeforeMultilineStrings: false
# 总是在template声明后换行
AlwaysBreakTemplateDeclarations: true
# false表示函数实参要么都在同一行要么都各自一行
BinPackArguments: true
# false表示所有形参要么都在同一行要么都各自一行
BinPackParameters: true
# 大括号换行只有当BreakBeforeBraces设置为Custom时才有效
BraceWrapping:
# class定义后面
AfterClass: true
# 控制语句后面
AfterControlStatement: true
# enum定义后面
AfterEnum: true
# 函数定义后面
AfterFunction: true
# 命名空间定义后面
AfterNamespace: true
# struct定义后面
AfterStruct: true
# union定义后面
AfterUnion: true
# extern之后
AfterExternBlock: false
# catch之前
BeforeCatch: true
# else之前
BeforeElse: true
# 缩进大括号
IndentBraces: false
# 分离空函数
SplitEmptyFunction: true
# 分离空语句
SplitEmptyRecord: false
# 分离空命名空间
SplitEmptyNamespace: false
# 在二元运算符前换行: None(在操作符后换行), NonAssignment(在非赋值的操作符前换行), All(在操作符前换行)
BreakBeforeBinaryOperators: NonAssignment
# 在大括号前换行: Attach(始终将大括号附加到周围的上下文), Linux(除函数、命名空间和类定义与Attach类似),
# Mozilla(除枚举、函数、记录定义与Attach类似), Stroustrup(除函数定义、catch、else与Attach类似),
# Allman(总是在大括号前换行), GNU(总是在大括号前换行,并对于控制语句的大括号增加额外的缩进), WebKit(在函数前换行), Custom
# 注:这里认为语句块也属于函数
BreakBeforeBraces: Custom
# 在三元运算符前换行
BreakBeforeTernaryOperators: false
# 在构造函数的初始化列表的冒号后换行
BreakConstructorInitializers: AfterColon
#BreakInheritanceList: AfterColon
BreakStringLiterals: false
# 每行字符的限制0表示没有限制
ColumnLimit: 0
CompactNamespaces: true
# 构造函数的初始化列表要么都在同一行,要么都各自一行
ConstructorInitializerAllOnOneLineOrOnePerLine: false
# 构造函数的初始化列表的缩进宽度
ConstructorInitializerIndentWidth: 4
# 延续的行的缩进宽度
ContinuationIndentWidth: 4
# 去除C++11的列表初始化的大括号{后和}前的空格
Cpp11BracedListStyle: true
# 继承最常用的指针和引用的对齐方式
DerivePointerAlignment: false
# 固定命名空间注释
FixNamespaceComments: true
# 缩进case标签
IndentCaseLabels: true
IndentPPDirectives: BeforeHash
# 缩进宽度
IndentWidth: 4
# 函数返回类型换行时,缩进函数声明或函数定义的函数名
IndentWrappedFunctionNames: false
# 保留在块开始处的空行
KeepEmptyLinesAtTheStartOfBlocks: false
# 连续空行的最大数量
MaxEmptyLinesToKeep: 1
# 命名空间的缩进: None, Inner(缩进嵌套的命名空间中的内容), All
NamespaceIndentation: All
# 指针和引用的对齐: Left, Right, Middle
PointerAlignment: Right
# 允许重新排版注释
ReflowComments: true
# 允许排序#include
SortIncludes: false
# 允许排序 using 声明
SortUsingDeclarations: false
# 在C风格类型转换后添加空格
SpaceAfterCStyleCast: true
# true -> (int) 0.1 false-> (int)0.1
# 在Template 关键字后面添加空格
SpaceAfterTemplateKeyword: true
# 在赋值运算符之前添加空格
SpaceBeforeAssignmentOperators: true
# SpaceBeforeCpp11BracedList: true
# SpaceBeforeCtorInitializerColon: true
# SpaceBeforeInheritanceColon: true
# 开圆括号之前添加一个空格: Never, ControlStatements, Always
SpaceBeforeParens: ControlStatements
# SpaceBeforeRangeBasedForLoopColon: true
# 在空的圆括号中添加空格
SpaceInEmptyParentheses: false
# 在尾随的评论前添加的空格数(只适用于//)
SpacesBeforeTrailingComments: 1
# 在尖括号的<后和>前添加空格
SpacesInAngles: false
# 在C风格类型转换的括号中添加空格
SpacesInCStyleCastParentheses: false
# 在容器(ObjC和JavaScript的数组和字典等)字面量中添加空格
SpacesInContainerLiterals: true
# 在圆括号的(后和)前添加空格
SpacesInParentheses: false
# 在方括号的[后和]前添加空格lamda表达式和未指明大小的数组的声明不受影响
SpacesInSquareBrackets: false
# 标准: Cpp03, Cpp11, Auto
Standard: Auto
# tab宽度
TabWidth: 4
# 使用tab字符: Never, ForIndentation, ForContinuationAndIndentation, Always
UseTab: Never

9
.gitignore vendored Normal file
View File

@@ -0,0 +1,9 @@
# Xmake cache
.xmake/
build/
# MacOS Cache
.DS_Store
.vscode
.VSCodeCounter

0
.gitmodules vendored Normal file
View File

11
Tools/SpeedTest/fib.fig Normal file
View File

@@ -0,0 +1,11 @@
fun fib(x:Int) -> Int
{
if (x <= 1)
{
return x;
}
return fib(x-1) + fib(x-2);
}
var result := fib(25);
__fstdout_println("result: ", result);

11
Tools/SpeedTest/fib.py Normal file
View File

@@ -0,0 +1,11 @@
from time import time as tt
def fib(x:int) -> int:
if x <= 1: return x;
return fib(x-1) + fib(x-2)
if __name__ == '__main__':
t0 = tt()
result = fib(25)
t1 = tt()
print('cost: ',t1-t0, 'result:', result)

View File

@@ -0,0 +1,24 @@
var callCnt:Int = 0;
fun fib(x:Int) -> Int
{
callCnt = callCnt + 1;
if (x <= 1)
{
return x;
}
return fib(x-1) + fib(x-2);
}
var fibx:Int;
__fstdout_print("input an index of fib ");
fibx = __fvalue_int_parse(__fstdin_read());
var cnt:Int = 0;
__fstdout_println("test forever");
while (true)
{
cnt = cnt + 1;
__fstdout_println("test ", cnt,",result: ", fib(fibx));
__fstdout_println("func `fib` called ", callCnt);
callCnt = 0;
}

View File

@@ -0,0 +1,4 @@
.vscode/**
.vscode-test/**
.gitignore
vsc-extension-quickstart.md

View File

@@ -0,0 +1,9 @@
# Change Log
All notable changes to the "fig-languague-syntax" extension will be documented in this file.
Check [Keep a Changelog](http://keepachangelog.com/) for recommendations on how to structure this file.
## [Unreleased]
- Initial release

View File

@@ -0,0 +1,3 @@
# fig-languague-syntax README
Nothing

View File

@@ -0,0 +1,82 @@
{
"comments": {
"lineComment": "//",
"blockComment": [
"/*",
"*/"
]
},
"brackets": [
[
"{",
"}"
],
[
"[",
"]"
],
[
"(",
")"
],
[
"\"",
"\""
],
[
"/\"",
"\"/"
]
],
"autoClosingPairs": [
{
"open": "{",
"close": "}"
},
{
"open": "[",
"close": "]"
},
{
"open": "(",
"close": ")"
},
{
"open": "\"",
"close": "\"",
"notIn": [
"string"
]
},
{
"open": "/\"",
"close": "\"/"
}
],
"surroundingPairs": [
[
"{",
"}"
],
[
"[",
"]"
],
[
"(",
")"
],
[
"\"",
"\""
],
[
"/\"",
"\"/"
]
],
"indentationRules": {
"increaseIndentPattern": "^(?=.*(\\{|\\()|.*/\\\").*$",
"decreaseIndentPattern": "^\\s*[}\\)]|\\s*\"/"
}
}

View File

@@ -0,0 +1,33 @@
{
"name": "fig-languague-syntax",
"displayName": "Fig Languague Syntax",
"description": ":)",
"version": "0.0.1",
"engines": {
"vscode": "^1.96.0"
},
"categories": [
"Programming Languages"
],
"contributes": {
"languages": [
{
"id": "fig",
"extensions": [
".fl"
],
"aliases": [
"Fig"
],
"configuration": "./language-configuration.json"
}
],
"grammars": [
{
"language": "fig",
"scopeName": "source.fig",
"path": "./syntaxes/fig.tmLanguage.json"
}
]
}
}

View File

@@ -0,0 +1,90 @@
{
"$schema": "https://raw.githubusercontent.com/martinring/tmlanguage/master/tmlanguage.json",
"name": "Fig",
"scopeName": "source.fig",
"fileTypes": [
".fl"
],
"patterns": [
{
"name": "comment.line.double-slash",
"match": "//.*"
},
{
"name": "comment.block",
"begin": "/\\*",
"end": "\\*/",
"captures": {
"0": {
"name": "comment.block.fig"
}
}
},
{
"name": "keyword.control",
"match": "\\b(if|else|for|while|continue|break|return|or|not)\\b"
},
{
"name": "keyword.declaration",
"match": "\\b(var|val|func|module)\\b"
},
{
"name": "storage.type",
"match": "\\b(Int32|Int64|Float|Double|Map|Bool|Null|String)\\b"
},
{
"name": "entity.name.function",
"match": "(?<=\\bfunc\\b)\\s+\\w+"
},
{
"name": "keyword.operator.arrow",
"match": "->"
},
{
"name": "keyword.operator",
"match": "[+\\-*/%&|><!]=?|&&|\\|\\||=="
},
{
"name": "string.quoted.double",
"begin": "\"",
"end": "\"",
"patterns": [
{
"name": "constant.character.escape",
"match": "\\\\."
}
]
},
{
"name": "string.quoted.multiline",
"begin": "\\/\\\"",
"end": "\\\"/",
"patterns": [
{
"name": "constant.character.escape",
"match": "\\\\."
}
]
},
{
"name": "constant.numeric.integer",
"match": "\\b\\d+\\b"
},
{
"name": "constant.numeric.float",
"match": "\\b\\d+\\.\\d+([eE][+-]?\\d+)?[f]?\\b"
},
{
"name": "punctuation.curly",
"match": "[{}]"
},
{
"name": "punctuation.parenthesis",
"match": "[()]"
},
{
"name": "punctuation.square",
"match": "[\\[\\]]"
}
]
}

View File

@@ -0,0 +1,29 @@
# Welcome to your VS Code Extension
## What's in the folder
* This folder contains all of the files necessary for your extension.
* `package.json` - this is the manifest file in which you declare your language support and define the location of the grammar file that has been copied into your extension.
* `syntaxes/figlang.tmLanguage.json` - this is the Text mate grammar file that is used for tokenization.
* `language-configuration.json` - this is the language configuration, defining the tokens that are used for comments and brackets.
## Get up and running straight away
* Make sure the language configuration settings in `language-configuration.json` are accurate.
* Press `F5` to open a new window with your extension loaded.
* Create a new file with a file name suffix matching your language.
* Verify that syntax highlighting works and that the language configuration settings are working.
## Make changes
* You can relaunch the extension from the debug toolbar after making changes to the files listed above.
* You can also reload (`Ctrl+R` or `Cmd+R` on Mac) the VS Code window with your extension to load your changes.
## Add more language features
* To add features such as IntelliSense, hovers and validators check out the VS Code extenders documentation at https://code.visualstudio.com/docs
## Install your extension
* To start using your extension with Visual Studio Code copy it into the `<user home>/.vscode/extensions` folder and restart Code.
* To share your extension with the world, read on https://code.visualstudio.com/docs about publishing an extension.

3
compile_flags.txt Normal file
View File

@@ -0,0 +1,3 @@
-std=c++2b
-static
-stdlib=libc++

248
docs/FigDesignDocument.md Normal file
View File

@@ -0,0 +1,248 @@
## `Fig Programming Language` <font face="Consolas"> DESIGN DOC </font>
---
### 关键词解释 Token
``` cpp
enum class TokenType : int8_t
{
Illegal = -1,
EndOfFile = 0,
Comments,
Identifier,
/* Keywords */
And, // and
Or, // or
Not, // not
Import, // import
Function, // fun
Variable, // var
Const, // const
Final, // final
While, // while
For, // for
Struct, // struct
Interface, // interface
Implement, // implement
Public, // public
// TypeNull, // Null
// TypeInt, // Int
// TypeString, // String
// TypeBool, // Bool
// TypeDouble, // Double
/* Literal Types (not keyword)*/
LiteralNumber, // number (int,float...)
LiteralString, // FString
LiteralBool, // bool (true/false)
LiteralNull, // null (Null的唯一实例)
/* Punct */
Plus, // +
Minus, // -
Asterisk, // *
Slash, // /
Percent, // %
Caret, // ^
Ampersand, // &
Pipe, // |
Tilde, // ~
ShiftLeft, // <<
ShiftRight, // >>
// Exclamation, // !
Question, // ?
Assign, // =
Less, // <
Greater, // >
Dot, // .
Comma, // ,
Colon, // :
Semicolon, // ;
SingleQuote, // '
DoubleQuote, // "
// Backtick, // `
// At, // @
// Hash, // #
// Dollar, // $
// Backslash, // '\'
// Underscore, // _
LeftParen, // (
RightParen, // )
LeftBracket, // [
RightBracket, // ]
LeftBrace, // {
RightBrace, // }
// LeftArrow, // <-
RightArrow, // ->
// DoubleArrow, // =>
Equal, // ==
NotEqual, // !=
LessEqual, // <=
GreaterEqual, // >=
PlusEqual, // +=
MinusEqual, // -=
AsteriskEqual, // *=
SlashEqual, // /=
PercentEqual, // %=
CaretEqual, // ^=
DoublePlus, // ++
DoubleMinus, // --
DoubleAmpersand, // &&
DoublePipe, // ||
Walrus, // :=
Power, // **
};
```
* `Illegal`
非法Token无法解析或语法错误
&nbsp;
* `EndOfFile`
即:
```cpp
EOF
```
文件终止符
&nbsp;
* `Comments`
注释Token包括单行和多行
&nbsp;
* `Identifier`
标识符,用户定义的‘名字’
&nbsp;
* `And` -> `&&` 或 `and`
逻辑与
&nbsp;
* `Or` -> `||` 或 `or`
逻辑或
&nbsp;
* `Not` -> `!` 或 `!`
逻辑非
&nbsp;
* `Import` -> `import`
导入关键字,用于导入包。 e.g
``` python
import std.io
```
&nbsp;
* `Function` -> `function`
定义函数,匿名也可
``` javascript
function greeting() -> Null public
{
std.io.println("Hello, world!");
}
function intAdder() -> Function public
{
return function(n1: Int, n2: Int) => n1 + n2;
}
```
此处的 `public` 为公开标识
不进行显示声明 `public` 默认为私有,即对象仅能在当前作用域访问
&nbsp;
* `Variable` -> `var`
定义变量
``` dart
var foobar;
var defaultVal = 1145;
var numberSpecific: Int;
var numberDefault: Int = 91;
foobar = "hello, world!";
foobar = 13;
defaultVal = "it can be any value";
numberSpecific = 78;
numberDefault = 0;
```
&nbsp;
* `Const` -> `const`
定义`全过程`常量: 从词法分析到求值器内的生命周期都为常量,仅能**在生命周期内**赋值一次,使用时也只有一个唯一对象
&nbsp;
必须在源码中指定值
``` dart
const Pi = 3.1415926; // recommended
const name; // ❌ 错误
```
定义后的常量,其值及类型均不可改变,故可省略类型标识。这是推荐的写法
同时,也可作为结构体成员的修饰
``` cpp
struct MathConstants
{
const Pi = 3.1415926;
};
```
&nbsp;
* `Final` -> `final`
定义`结构体运行时`常量:从运行期开始的常量,仅能**在运行时**被赋值一次, **仅修饰结构体成员**
不存在 **final** 类型的外部常量
&nbsp;
定义后的常量,其值及类型均不可改变,故可省略类型标识。这是推荐的写法
``` cpp
struct Person
{
final name: String
final age: Int
final sex: String = "gender" // ❌ 请使用 const 代替
}
```
&nbsp;
* `While` -> `while`
while循环满足一个布尔类型条件循环执行语句
``` cpp
while (ans != 27.19236)
{
ans = Int.parse(std.io.readline());
}
```
&nbsp;
* `For` -> `for`
for循环拥有初始语句、条件、增长语句
``` cpp
for (init; condition; increment)
{
statements...;
}
```
&nbsp;
* `Struct` -> `struct`
结构体,面对对象
``` cpp
struct Person
{
public final name: String; // public, final
public age: Int; // public
sex: String; // private normally;
const ADULT_AGE = 18; // private, const
fun printInfo()
{
std.io.println("name: {}, age: {}, sex: {}", name, age, sex);
}
};
var person = Person {"Fig", 1, "IDK"};
// or
var person = Person {name: "Fig", age: 1, sex: "IDK"}; // can be unordered
var name = "Fig";
var age = 1;
var sex = "IDK";
var person = Person {name, age, sex};
// = `var person = Person {name: name, age: age, sex: sex}`
```

View File

@@ -0,0 +1,14 @@
#pragma once
namespace Fig
{
enum class AccessModifier
{
Normal,
Const,
Final,
Public,
PublicConst,
PublicFinal,
};
};

View File

@@ -0,0 +1,29 @@
#pragma once
#include <Ast/astBase.hpp>
namespace Fig::Ast
{
class BinaryExprAst final : public ExpressionAst
{
public:
Operator op;
Expression lexp, rexp;
BinaryExprAst()
{
type = AstType::BinaryExpr;
}
BinaryExprAst(Expression _lexp, Operator _op, Expression _rexp)
{
type = AstType::BinaryExpr;
lexp = _lexp;
op = _op;
rexp = _rexp;
}
};
using BinaryExpr = std::shared_ptr<BinaryExprAst>;
}; // namespace Fig

View File

@@ -0,0 +1,65 @@
// Container Data Types --- Tuple/List/Map...
#pragma once
#include <Ast/astBase.hpp>
#include <map>
namespace Fig::Ast
{
class ListExprAst final : public ExpressionAst
{
public:
std::vector<Expression> val;
ListExprAst()
{
type = AstType::ListExpr;
}
ListExprAst(std::vector<Expression> _val) :
val(std::move(_val))
{
type = AstType::ListExpr;
}
};
using ListExpr = std::shared_ptr<ListExprAst>;
class TupleExprAst final : public ExpressionAst
{
public:
std::vector<Expression> val;
TupleExprAst()
{
type = AstType::TupleExpr;
}
TupleExprAst(std::vector<Expression> _val) :
val(std::move(_val))
{
type = AstType::TupleExpr;
}
};
using TupleExpr = std::shared_ptr<TupleExprAst>;
class MapExprAst final : public ExpressionAst
{
public:
std::map<FString, Expression> val;
MapExprAst()
{
type = AstType::MapExpr;
}
MapExprAst(std::map<FString, Expression> _val) :
val(std::move(_val))
{
type = AstType::MapExpr;
}
};
using MapExpr = std::shared_ptr<MapExprAst>;
}; // namespace Fig::Ast

46
include/Ast/ControlSt.hpp Normal file
View File

@@ -0,0 +1,46 @@
#pragma once
#include <Ast/astBase.hpp>
namespace Fig::Ast
{
class ReturnSt final : public StatementAst
{
public:
Expression retValue;
ReturnSt()
{
type = AstType::ReturnSt;
}
ReturnSt(Expression _retValue) :
retValue(_retValue)
{
type = AstType::ReturnSt;
}
};
using Return = std::shared_ptr<ReturnSt>;
class BreakSt final : public StatementAst
{
public:
BreakSt()
{
type = AstType::BreakSt;
}
};
using Break = std::shared_ptr<BreakSt>;
class ContinueSt final : public StatementAst
{
public:
ContinueSt()
{
type = AstType::ContinueSt;
}
};
using Continue = std::shared_ptr<ContinueSt>;
};

View File

@@ -0,0 +1,21 @@
#pragma once
#include <Ast/astBase.hpp>
namespace Fig::Ast
{
class ExpressionStmtAst final : public StatementAst
{
public:
Expression exp;
ExpressionStmtAst()
{
type = AstType::ExpressionStmt;
}
ExpressionStmtAst(Expression _exp) : exp(std::move(_exp))
{
type = AstType::ExpressionStmt;
}
};
using ExpressionStmt = std::shared_ptr<ExpressionStmtAst>;
}

View File

@@ -0,0 +1,54 @@
// include/Ast/FunctionCall.hpp
#pragma once
#include <Ast/astBase.hpp>
#include <value.hpp>
namespace Fig::Ast
{
struct FunctionArguments
{
std::vector<Expression> argv;
size_t getLength() const { return argv.size(); }
};
struct FunctionCallArgs final
{
std::vector<Value> argv;
size_t getLength() const { return argv.size(); }
};
class FunctionCallExpr final : public ExpressionAst
{
public:
FString name;
FunctionArguments arg;
FunctionCallExpr()
{
type = AstType::FunctionCall;
}
FunctionCallExpr(FString _name, FunctionArguments _arg) :
name(std::move(_name)), arg(std::move(_arg))
{
type = AstType::FunctionCall;
}
virtual FString toString() override
{
FString s = name;
s += u8"(";
for (size_t i = 0; i < arg.argv.size(); ++i)
{
s += arg.argv[i]->toString();
if (i + 1 < arg.argv.size())
s += u8", ";
}
s += u8")";
return s;
}
};
using FunctionCall = std::shared_ptr<FunctionCallExpr>;
}; // namespace Fig

View File

@@ -0,0 +1,46 @@
#pragma once
#include <Ast/astBase.hpp>
#include <Ast/functionParameters.hpp>
#include <fig_string.hpp>
#include <value.hpp>
namespace Fig::Ast
{
/*
fun greet(greeting, name:String, age:Int, split:String=":") public -> Null
{
io.println("{}, {}{}{}", greeting, name, split, age);
}
`greeting`, `name`, `age` -> positional parameters
`split` -> default parameter
*/
class FunctionDefSt final : public StatementAst // for define
{
public:
FString name;
FunctionParameters paras;
bool isPublic;
FString retType;
BlockStatement body;
FunctionDefSt() :
retType(ValueType::Null.name)
{
type = AstType::FunctionDefSt;
}
FunctionDefSt(FString _name, FunctionParameters _paras, bool _isPublic, FString _retType, BlockStatement _body)
{
type = AstType::FunctionDefSt;
name = std::move(_name);
paras = std::move(_paras);
isPublic = _isPublic;
retType = std::move(_retType);
body = std::move(_body);
}
};
using FunctionDef = std::shared_ptr<FunctionDefSt>;
}; // namespace Fig

68
include/Ast/IfSt.hpp Normal file
View File

@@ -0,0 +1,68 @@
#pragma once
#include <Ast/astBase.hpp>
namespace Fig::Ast
{
class ElseSt final : public StatementAst
{
public:
BlockStatement body;
ElseSt()
{
type = AstType::ElseSt;
}
ElseSt(BlockStatement _body) :
body(_body)
{
type = AstType::ElseSt;
}
virtual FString toString() override
{
return FString(std::format("<Else Ast at {}:{}>", aai.line, aai.column));
}
};
using Else = std::shared_ptr<ElseSt>;
class ElseIfSt final : public StatementAst
{
public:
Expression condition;
BlockStatement body;
ElseIfSt()
{
type = AstType::ElseIfSt;
}
ElseIfSt(Expression _condition,
BlockStatement _body) :
condition(_condition), body(_body)
{
type = AstType::ElseIfSt;
}
virtual FString toString() override
{
return FString(std::format("<ElseIf Ast at {}:{}>", aai.line, aai.column));
}
};
using ElseIf = std::shared_ptr<ElseIfSt>;
class IfSt final : public StatementAst
{
public:
Expression condition;
BlockStatement body;
std::vector<ElseIf> elifs;
Else els;
IfSt()
{
type = AstType::IfSt;
}
IfSt(Expression _condition,
BlockStatement _body,
std::vector<ElseIf> _elifs,
Else _els) :
condition(_condition), body(_body), elifs(_elifs), els(_els)
{
type = AstType::IfSt;
}
};
using If = std::shared_ptr<IfSt>;
}; // namespace Fig

View File

28
include/Ast/InitExpr.hpp Normal file
View File

@@ -0,0 +1,28 @@
#pragma once
#include <Ast/astBase.hpp>
namespace Fig::Ast
{
class InitExprAst final : public ExpressionAst
{
public:
FString structName;
std::vector<std::pair<FString, Expression>> args;
InitExprAst()
{
type = AstType::InitExpr;
}
InitExprAst(FString _structName, std::vector<std::pair<FString, Expression>> _args) :
structName(std::move(_structName)), args(std::move(_args))
{
type = AstType::InitExpr;
}
};
using InitExpr = std::shared_ptr<InitExprAst>;
}; // namespace Fig::Ast

View File

@@ -0,0 +1,43 @@
#pragma once
#include <Ast/astBase.hpp>
#include <Ast/functionParameters.hpp>
#include <Value/Type.hpp>
#include <fig_string.hpp>
namespace Fig::Ast
{
class LambdaExprAst : public ExpressionAst
{
public:
/*
Lambda:
fun (greeting) -> Null {}
*/
FunctionParameters paras;
FString retType;
BlockStatement body;
LambdaExprAst() :
retType(ValueType::Null.name)
{
type = AstType::LambdaExpr;
}
LambdaExprAst(FunctionParameters _paras, FString _retType, BlockStatement _body) :
retType(ValueType::Null.name)
{
paras = std::move(_paras);
retType = std::move(_retType);
body = std::move(_body);
}
virtual FString typeName() override
{
return FString(std::format("LambdaExprAst<{}>", retType.toBasicString()));
}
virtual ~LambdaExprAst() = default;
};
using LambdaExpr = std::shared_ptr<LambdaExprAst>;
}; // namespace Fig

View File

@@ -0,0 +1,45 @@
#pragma once
#include <Ast/astBase.hpp>
#include <fig_string.hpp>
#include <Ast/AccessModifier.hpp>
#include <vector>
namespace Fig::Ast
{
struct StructDefField
{
AccessModifier am;
FString fieldName;
FString tiName;
Expression defaultValueExpr;
StructDefField() {}
StructDefField(AccessModifier _am, FString _fieldName, FString _tiName, Expression _defaultValueExpr) :
am(std::move(_am)), fieldName(std::move(_fieldName)), tiName(std::move(_tiName)), defaultValueExpr(std::move(_defaultValueExpr))
{
}
};
class StructDefSt final : public StatementAst
{
public:
bool isPublic;
const FString name;
const std::vector<StructDefField> fields; // field name (:type name = default value expression)
// name / name: String / name: String = "Fig"
const BlockStatement body;
StructDefSt()
{
type = AstType::StructSt;
}
StructDefSt(bool _isPublic, FString _name, std::vector<StructDefField> _fields, BlockStatement _body) :
isPublic(std::move(_isPublic)), name(std::move(_name)), fields(std::move(_fields)), body(std::move(_body))
{
type = AstType::StructSt;
}
};
using StructDef = std::shared_ptr<StructDefSt>;
}; // namespace Fig

View File

@@ -0,0 +1,29 @@
#pragma once
#include <Ast/astBase.hpp>
namespace Fig::Ast
{
// condition ? val_true : val_false
class TernaryExprAst final : public ExpressionAst
{
public:
Expression condition;
Expression valueT;
Expression valueF;
TernaryExprAst()
{
type = AstType::TernaryExpr;
}
TernaryExprAst(Expression _condition, Expression _valueT, Expression _valueF)
{
type = AstType::TernaryExpr;
condition = std::move(_condition);
valueT = std::move(_valueT);
valueF = std::move(_valueF);
}
};
using TernaryExpr = std::shared_ptr<TernaryExprAst>;
} // namespace Fig

27
include/Ast/UnaryExpr.hpp Normal file
View File

@@ -0,0 +1,27 @@
#pragma once
#include <Ast/astBase.hpp>
namespace Fig::Ast
{
class UnaryExprAst final : public ExpressionAst
{
public:
Operator op;
Expression exp;
UnaryExprAst()
{
type = AstType::UnaryExpr;
}
UnaryExprAst(Operator _op, Expression _exp)
{
type = AstType::UnaryExpr;
op = _op;
exp = std::move(_exp);
}
};
using UnaryExpr = std::shared_ptr<UnaryExprAst>;
} // namespace Fig

26
include/Ast/ValueExpr.hpp Normal file
View File

@@ -0,0 +1,26 @@
#pragma once
#include <Ast/astBase.hpp>
#include <value.hpp>
namespace Fig::Ast
{
class ValueExprAst final : public ExpressionAst
{
public:
Value val;
ValueExprAst()
{
type = AstType::ValueExpr;
}
ValueExprAst(Value _val)
{
type = AstType::ValueExpr;
val = std::move(_val);
}
};
using ValueExpr = std::shared_ptr<ValueExprAst>;
};

View File

@@ -0,0 +1,26 @@
#pragma once
#include <Ast/astBase.hpp>
namespace Fig::Ast
{
class VarAssignSt final : public StatementAst
{
public:
const FString varName;
const Expression valueExpr;
VarAssignSt()
{
type = AstType::VarAssignSt;
}
VarAssignSt(FString _varName, Expression _valueExpr) :
varName(std::move(_varName)), valueExpr(std::move(_valueExpr))
{
type = AstType::VarAssignSt;
}
};
using VarAssign = std::shared_ptr<VarAssignSt>;
}; // namespace Fig

34
include/Ast/VarDef.hpp Normal file
View File

@@ -0,0 +1,34 @@
#pragma once
#include <Ast/astBase.hpp>
#include <Value/Type.hpp>
namespace Fig::Ast
{
class VarDefAst final : public StatementAst
{
public:
bool isPublic;
bool isConst;
FString name;
FString typeName;
Expression expr;
VarDefAst() :
typeName(ValueType::Any.name)
{
type = AstType::VarDefSt;
}
VarDefAst(bool _isPublic, bool _isConst, FString _name, FString _info, Expression _expr) :
typeName(std::move(_info))
{
type = AstType::VarDefSt;
isPublic = _isPublic;
isConst = _isConst;
name = std::move(_name);
expr = std::move(_expr);
}
};
using VarDef = std::shared_ptr<VarDefAst>;
} // namespace Fig

24
include/Ast/VarExpr.hpp Normal file
View File

@@ -0,0 +1,24 @@
#pragma once
#include <Ast/astBase.hpp>
namespace Fig::Ast
{
class VarExprAst final : public ExpressionAst
{
public:
const FString name;
VarExprAst() :
name(u8"")
{
type = AstType::VarExpr;
}
VarExprAst(FString _name) :
name(std::move(_name))
{
type = AstType::VarExpr;
}
};
using VarExpr = std::shared_ptr<VarExprAst>;
}; // namespace Fig

26
include/Ast/WhileSt.hpp Normal file
View File

@@ -0,0 +1,26 @@
#pragma once
#include <Ast/astBase.hpp>
namespace Fig::Ast
{
class WhileSt final : public StatementAst
{
public:
Expression condition;
BlockStatement body;
WhileSt()
{
type = AstType::WhileSt;
}
WhileSt(Expression _condition, BlockStatement _body)
: condition(_condition), body(_body)
{
type = AstType::WhileSt;
}
};
using While = std::shared_ptr<WhileSt>;
};

338
include/Ast/astBase.hpp Normal file
View File

@@ -0,0 +1,338 @@
#pragma once
#include <token.hpp>
#include <fig_string.hpp>
#include <format>
#include <unordered_map>
#include <memory>
#include <cstdint>
#include <unordered_set>
namespace Fig::Ast
{
enum class AstType : uint8_t
{
/* Base Class */
_AstBase,
StatementBase,
ExpressionBase,
/* Expression */
ValueExpr,
VarExpr,
FunctionCall,
LambdaExpr,
UnaryExpr,
BinaryExpr,
TernaryExpr,
ListExpr, // []
TupleExpr, // ()
MapExpr, // {}
InitExpr, // struct{}
/* Statement */
BlockStatement,
ExpressionStmt,
VarDefSt,
FunctionDefSt,
StructSt,
ImplementSt,
IfSt,
ElseSt,
ElseIfSt,
VarAssignSt,
WhileSt,
ReturnSt,
BreakSt,
ContinueSt,
};
static const std::unordered_map<AstType, FString> astTypeToString{
/* Base Class */
{AstType::_AstBase, FString(u8"Ast")},
{AstType::StatementBase, FString(u8"Statement")},
{AstType::ExpressionBase, FString(u8"Expression")},
/* Expression */
{AstType::ValueExpr, FString(u8"ValueExpr")},
{AstType::LambdaExpr, FString(u8"LambdaExpr")},
{AstType::UnaryExpr, FString(u8"UnaryExpr")},
{AstType::BinaryExpr, FString(u8"BinaryExpr")},
{AstType::TernaryExpr, FString(u8"TernaryExpr")},
{AstType::InitExpr, FString(u8"InitExpr")},
/* Statement */
{AstType::BlockStatement, FString(u8"BlockStatement")},
{AstType::VarDefSt, FString(u8"VarSt")},
{AstType::FunctionDefSt, FString(u8"FunctionDefSt")},
{AstType::StructSt, FString(u8"StructSt")},
{AstType::ImplementSt, FString(u8"ImplementSt")},
{AstType::IfSt, FString(u8"IfSt")},
{AstType::ElseSt, FString(u8"ElseSt")},
{AstType::ElseIfSt, FString(u8"ElseIfSt")},
{AstType::VarAssignSt, FString(u8"VarAssignSt")},
{AstType::WhileSt, FString(u8"WhileSt")},
{AstType::ReturnSt, FString(u8"ReturnSt")},
{AstType::BreakSt, FString(u8"BreakSt")},
{AstType::ContinueSt, FString(u8"ContinueSt")},
};
struct AstAddressInfo
{
size_t line, column;
};
class _AstBase
{
protected:
AstType type;
AstAddressInfo aai;
public:
_AstBase(const _AstBase &) = default;
_AstBase(_AstBase &&) = default;
_AstBase &operator=(const _AstBase &) = default;
_AstBase &operator=(_AstBase &&) = default;
_AstBase() {}
void setAAI(AstAddressInfo _aai)
{
aai = std::move(_aai);
}
virtual FString typeName()
{
return astTypeToString.at(type);
}
virtual FString toString()
{
return FString(std::format("<Base Ast '{}' at {}:{}>", typeName().toBasicString(), aai.line, aai.column));
}
AstAddressInfo getAAI()
{
return aai;
}
AstType getType()
{
return type;
}
};
class StatementAst : public _AstBase
{
public:
using _AstBase::_AstBase;
using _AstBase::operator=;
StatementAst()
{
type = AstType::StatementBase;
}
virtual FString toString() override
{
return FString(std::format("<Stmt Ast '{}' at {}:{}>", typeName().toBasicString(), aai.line, aai.column));
}
};
class EofStmt final : public StatementAst
{
public:
EofStmt()
{
type = AstType::StatementBase;
}
virtual FString toString() override
{
return FString(std::format("<EOF Stmt at {}:{}>", aai.line, aai.column));
}
};
class ExpressionAst : public _AstBase
{
public:
using _AstBase::_AstBase;
using _AstBase::operator=;
ExpressionAst()
{
type = AstType::ExpressionBase;
}
virtual FString toString() override
{
return FString(std::format("<Expr Ast '{}' at {}:{}>", typeName().toBasicString(), aai.line, aai.column));
}
};
enum class Operator : uint8_t
{
LeftParen,
RightParen,
// 算术
Add, // +
Subtract, // -
Multiply, // *
Divide, // /
Modulo, // %
Power, // **
// 逻辑
And, // and / &&
Or, // or / ||
Not, // not / !
// 比较
Equal, // ==
NotEqual, // !=
Less, // <
LessEqual, // <=
Greater, // >
GreaterEqual, // >=
// 三目
TernaryCond,
// 位运算
BitAnd, // &
BitOr, // |
BitXor, // ^
BitNot, // ~
ShiftLeft, // <<
ShiftRight, // >>
// 赋值表达式
Walrus, // :=
// 点运算符 .
Dot,
};
static const std::unordered_set<Operator> unaryOps{
Operator::Not,
Operator::Subtract,
Operator::BitNot,
};
static const std::unordered_set<Operator> binaryOps{
Operator::Add,
Operator::Subtract,
Operator::Multiply,
Operator::Divide,
Operator::Modulo,
Operator::Power,
Operator::And,
Operator::Or,
Operator::Equal,
Operator::NotEqual,
Operator::Less,
Operator::LessEqual,
Operator::Greater,
Operator::GreaterEqual,
Operator::BitAnd,
Operator::BitOr,
Operator::BitXor,
Operator::BitNot,
Operator::ShiftLeft,
Operator::ShiftRight,
Operator::Walrus,
Operator::Dot};
static const std::unordered_set<Operator> ternaryOps{Operator::TernaryCond};
static const std::unordered_map<TokenType, Operator> TokenToOp{
// 算术
{TokenType::Plus, Operator::Add},
{TokenType::Minus, Operator::Subtract},
{TokenType::Asterisk, Operator::Multiply},
{TokenType::Slash, Operator::Divide},
{TokenType::Percent, Operator::Modulo},
{TokenType::Power, Operator::Power},
// 逻辑
{TokenType::And, Operator::And},
{TokenType::DoubleAmpersand, Operator::And},
{TokenType::Or, Operator::Or},
{TokenType::DoublePipe, Operator::Or},
{TokenType::Not, Operator::Not},
// 比较
{TokenType::Equal, Operator::Equal},
{TokenType::NotEqual, Operator::NotEqual},
{TokenType::Less, Operator::Less},
{TokenType::LessEqual, Operator::LessEqual},
{TokenType::Greater, Operator::Greater},
{TokenType::GreaterEqual, Operator::GreaterEqual},
// 三目
{TokenType::Question, Operator::TernaryCond},
// 位运算
{TokenType::Ampersand, Operator::BitAnd},
{TokenType::Pipe, Operator::BitOr},
{TokenType::Caret, Operator::BitXor},
{TokenType::Tilde, Operator::BitNot},
{TokenType::ShiftLeft, Operator::ShiftLeft},
{TokenType::ShiftRight, Operator::ShiftRight},
// 赋值表达式
{TokenType::Walrus, Operator::Walrus},
// 点运算符
{TokenType::Dot, Operator::Dot},
}; // :=
inline bool isOpUnary(Operator op)
{
return unaryOps.contains(op);
}
inline bool isOpBinary(Operator op)
{
return binaryOps.contains(op);
}
inline bool isOpTernary(Operator op)
{
return ternaryOps.contains(op);
}
using AstBase = std::shared_ptr<_AstBase>;
using Statement = std::shared_ptr<StatementAst>;
using Expression = std::shared_ptr<ExpressionAst>;
using Eof = std::shared_ptr<EofStmt>;
class BlockStatementAst : public StatementAst
{
public:
const std::vector<Statement> stmts;
BlockStatementAst()
{
type = AstType::BlockStatement;
}
BlockStatementAst(std::vector<Statement> _stmts) :
stmts(std::move(_stmts))
{
type = AstType::BlockStatement;
}
virtual FString typeName() override
{
return FString(u8"BlockStatement");
}
virtual FString toString() override
{
return FString(std::format("<StmtAst '{}' at {}:{}>", typeName().toBasicString(), aai.line, aai.column));
}
virtual ~BlockStatementAst() = default;
};
using BlockStatement = std::shared_ptr<BlockStatementAst>;
// static BlockStatement builtinEmptyBlockSt(new BlockStatementAst());
}; // namespace Fig::Ast

View File

@@ -0,0 +1,39 @@
#pragma once
#include <Ast/astBase.hpp>
#include <Value/Type.hpp>
#include <fig_string.hpp>
namespace Fig::Ast
{
struct FunctionParameters // for define
{
/*
Positional Parameters:
fun test(pp1, pp2: Int)
Default Parameters:
fun test2(dp1 = 10, dp2:String = "default parameter 2")
*/
using PosParasType = std::vector<std::pair<FString, FString>>;
using DefParasType = std::vector<std::pair<FString, std::pair<FString, Expression>>>;
PosParasType posParas;
DefParasType defParas; // default parameters
FunctionParameters()
{
}
FunctionParameters(PosParasType _posParas, DefParasType _defParas)
{
posParas = std::move(_posParas);
defParas = std::move(_defParas);
}
size_t size() const
{
return posParas.size() + defParas.size();
}
};
}

200
include/AstPrinter.hpp Normal file
View File

@@ -0,0 +1,200 @@
#pragma once
#include <iostream>
#include <memory>
#include <string>
#include <ast.hpp>
#include <magic_enum/magic_enum.hpp>
using namespace Fig;
using namespace Fig::Ast;
class AstPrinter
{
public:
void print(const AstBase &node, int indent = 0)
{
if (!node) return;
switch (node->getType())
{
case AstType::BinaryExpr:
printBinaryExpr(std::static_pointer_cast<BinaryExprAst>(node), indent);
break;
case AstType::UnaryExpr:
printUnaryExpr(std::static_pointer_cast<UnaryExprAst>(node), indent);
break;
case AstType::ValueExpr:
printValueExpr(std::static_pointer_cast<ValueExprAst>(node), indent);
break;
case AstType::VarDefSt:
printVarDef(std::static_pointer_cast<VarDefAst>(node), indent);
break;
case AstType::VarExpr:
printVarExpr(std::static_pointer_cast<VarExprAst>(node), indent);
break;
case AstType::BlockStatement:
printBlockStatement(std::static_pointer_cast<BlockStatementAst>(node), indent);
break;
case AstType::FunctionCall:
printFunctionCall(std::static_pointer_cast<FunctionCallExpr>(node), indent);
break;
case AstType::FunctionDefSt:
printFunctionSt(std::static_pointer_cast<FunctionDefSt>(node), indent);
break;
case AstType::IfSt:
printIfSt(std::static_pointer_cast<IfSt>(node), indent);
break;
case AstType::LambdaExpr:
printLambdaExpr(std::static_pointer_cast<LambdaExprAst>(node), indent);
break;
case AstType::TernaryExpr:
printTernaryExpr(std::static_pointer_cast<TernaryExprAst>(node), indent);
break;
default:
printIndent(indent);
std::cout << "Unknown AST Node\n";
}
}
private:
void printIndent(int indent)
{
std::cout << std::string(indent, ' ');
}
void printFString(const Fig::FString &fstr, int indent)
{
printIndent(indent);
std::cout << "FString: \"";
std::cout.write(reinterpret_cast<const char *>(fstr.data()), fstr.size());
std::cout << "\"\n";
}
template <typename EnumT>
void printEnum(const EnumT &value, int indent)
{
printIndent(indent);
std::cout << "Enum: " << magic_enum::enum_name(value) << "\n";
}
void printBinaryExpr(const std::shared_ptr<BinaryExprAst> &node, int indent)
{
printIndent(indent);
std::cout << "BinaryExpr\n";
printEnum(node->op, indent + 2);
printIndent(indent + 2);
std::cout << "Left:\n";
print(node->lexp, indent + 4);
printIndent(indent + 2);
std::cout << "Right:\n";
print(node->rexp, indent + 4);
}
void printUnaryExpr(const std::shared_ptr<UnaryExprAst> &node, int indent)
{
printIndent(indent);
std::cout << "UnaryExpr\n";
printEnum(node->op, indent + 2);
printIndent(indent + 2);
std::cout << "Expr:\n";
print(node->exp, indent + 4);
}
void printValueExpr(const std::shared_ptr<ValueExprAst> &node, int indent)
{
printIndent(indent);
std::cout << "ValueExpr\n";
printFString(node->val.toString(), indent + 2);
}
void printVarDef(const std::shared_ptr<VarDefAst> &node, int indent)
{
printIndent(indent);
std::cout << "VarDef\n";
printIndent(indent + 2);
std::cout << "Name: ";
printFString(node->name, 0);
printIndent(indent + 2);
std::cout << "Type: ";
printFString(node->typeName, 0);
if (node->expr)
{
printIndent(indent + 2);
std::cout << "InitExpr:\n";
print(node->expr, indent + 4);
}
}
void printVarExpr(const std::shared_ptr<VarExprAst> &node, int indent)
{
printIndent(indent);
std::cout << "VarExpr\n";
printIndent(indent + 2);
std::cout << "Name: ";
printFString(node->name, 0);
}
void printBlockStatement(const std::shared_ptr<BlockStatementAst> &node, int indent)
{
printIndent(indent);
std::cout << "BlockStatement\n";
for (const auto &stmt : node->stmts)
{
print(stmt, indent + 2);
}
}
void printFunctionCall(const std::shared_ptr<FunctionCallExpr> &node, int indent)
{
printIndent(indent);
std::cout << "FunctionCall\n";
printIndent(indent + 2);
std::cout << "FuncName: ";
printFString(node->name, 0);
printIndent(indent + 2);
}
void printFunctionSt(const std::shared_ptr<FunctionDefSt> &node, int indent)
{
printIndent(indent);
std::cout << "FunctionSt\n";
printIndent(indent + 2);
std::cout << "Name: ";
printFString(node->name, 0);
printIndent(indent + 2);
printIndent(indent + 2);
std::cout << "Body:\n";
print(node->body, indent + 4);
}
void printIfSt(const std::shared_ptr<IfSt> &node, int indent)
{
printIndent(indent);
std::cout << "IfSt\n";
printIndent(indent + 2);
std::cout << "Condition:\n";
print(node->condition, indent + 4);
printIndent(indent + 2);
}
void printLambdaExpr(const std::shared_ptr<LambdaExprAst> &node, int indent)
{
printIndent(indent);
std::cout << "LambdaExpr\n"
<< node->toString().toBasicString();
printIndent(indent + 2);
}
void printTernaryExpr(const std::shared_ptr<TernaryExprAst> &node, int indent)
{
printIndent(indent);
std::cout << "TernaryExpr\n";
printIndent(indent + 2);
std::cout << "Condition:\n";
print(node->condition, indent + 4);
printIndent(indent + 2);
std::cout << "TrueExpr:\n";
print(node->valueT, indent + 4);
printIndent(indent + 2);
std::cout << "FalseExpr:\n";
print(node->valueF, indent + 4);
}
};

190
include/Value/BaseValue.hpp Normal file
View File

@@ -0,0 +1,190 @@
#pragma once
#include <Value/Type.hpp>
#include <fig_string.hpp>
#include <memory>
#include <format>
namespace Fig
{
template <class T>
class __ValueWrapper
{
public:
const TypeInfo ti;
std::unique_ptr<T> data;
__ValueWrapper(const __ValueWrapper &other) :
ti(other.ti)
{
if (other.data)
data = std::make_unique<T>(*other.data);
}
__ValueWrapper(__ValueWrapper &&other) noexcept
:
ti(other.ti), data(std::move(other.data)) {}
__ValueWrapper &operator=(const __ValueWrapper &other)
{
if (this != &other)
{
if (other.data)
data = std::make_unique<T>(*other.data);
else
data.reset();
}
return *this;
}
__ValueWrapper &operator=(__ValueWrapper &&other) noexcept
{
if (this != &other)
{
data = std::move(other.data);
}
return *this;
}
const T &getValue() const
{
if (!data) throw std::runtime_error("Accessing null Value data");
return *data;
}
virtual size_t getSize() const
{
return sizeof(T);
}
virtual bool isNull() const
{
return !data;
}
virtual FString toString() const
{
if (!data)
return FString(std::format("<{} object (null)>", ti.name.toBasicString()));
return FString(std::format(
"<{} object @{:p}>",
ti.name.toBasicString(),
static_cast<const void *>(data.get())));
}
__ValueWrapper(const TypeInfo &_ti) :
ti(_ti) {}
__ValueWrapper(const T &x, const TypeInfo &_ti) :
ti(_ti)
{
data = std::make_unique<T>(x);
}
};
class Int final : public __ValueWrapper<ValueType::IntClass>
{
public:
Int(const ValueType::IntClass &x) :
__ValueWrapper(x, ValueType::Int) {}
Int(const Int &) = default;
Int(Int &&) noexcept = default;
Int &operator=(const Int &) = default;
Int &operator=(Int &&) noexcept = default;
bool operator==(const Int &other) const noexcept
{
return getValue() == other.getValue();
}
bool operator!=(const Int &other) const noexcept
{
return !(*this == other);
}
};
class Double final : public __ValueWrapper<ValueType::DoubleClass>
{
public:
Double(const ValueType::DoubleClass &x) :
__ValueWrapper(x, ValueType::Double) {}
Double(const Double &) = default;
Double(Double &&) noexcept = default;
Double &operator=(const Double &) = default;
Double &operator=(Double &&) noexcept = default;
bool operator==(const Double &other) const noexcept
{
return getValue() == other.getValue();
}
bool operator!=(const Double &other) const noexcept
{
return !(*this == other);
}
};
class Null final : public __ValueWrapper<ValueType::NullClass>
{
public:
Null() :
__ValueWrapper(ValueType::NullClass{}, ValueType::Null) {}
Null(const Null &) = default;
Null(Null &&) noexcept = default;
Null &operator=(const Null &) = default;
Null &operator=(Null &&) noexcept = default;
bool isNull() const override { return true; }
bool operator==(const Null &) const noexcept { return true; }
bool operator!=(const Null &) const noexcept { return false; }
};
class String final : public __ValueWrapper<ValueType::StringClass>
{
public:
String(const ValueType::StringClass &x) :
__ValueWrapper(x, ValueType::String) {}
String(const String &) = default;
String(String &&) noexcept = default;
String &operator=(const String &) = default;
String &operator=(String &&) noexcept = default;
bool operator==(const String &other) const noexcept
{
return getValue() == other.getValue();
}
bool operator!=(const String &other) const noexcept
{
return !(*this == other);
}
};
class Bool final : public __ValueWrapper<ValueType::BoolClass>
{
public:
Bool(const ValueType::BoolClass &x) :
__ValueWrapper(x, ValueType::Bool) {}
Bool(const Bool &) = default;
Bool(Bool &&) noexcept = default;
Bool &operator=(const Bool &) = default;
Bool &operator=(Bool &&) noexcept = default;
bool operator==(const Bool &other) const noexcept
{
return getValue() == other.getValue();
}
bool operator!=(const Bool &other) const noexcept
{
return !(*this == other);
}
};
} // namespace Fig

79
include/Value/Type.hpp Normal file
View File

@@ -0,0 +1,79 @@
#pragma once
#include <fig_string.hpp>
#include <variant>
#include <map>
#include <vector>
#include <list>
namespace Fig
{
class TypeInfo final
{
private:
size_t id;
public:
FString name;
FString toString() const
{
return name;
}
static std::map<FString, size_t> typeMap;
static size_t getID(FString _name)
{
return typeMap.at(_name);
}
size_t getInstanceID(FString _name) const
{
return id;
}
TypeInfo();
TypeInfo(FString _name, bool reg = false);
TypeInfo(const TypeInfo &other) = default;
bool operator==(const TypeInfo &other) const
{
return id == other.id;
}
};
// class Value;
namespace ValueType
{
extern const TypeInfo Any;
extern const TypeInfo Null;
extern const TypeInfo Int;
extern const TypeInfo String;
extern const TypeInfo Bool;
extern const TypeInfo Double;
extern const TypeInfo Function;
extern const TypeInfo StructType;
extern const TypeInfo StructInstance;
extern const TypeInfo List;
extern const TypeInfo Map;
extern const TypeInfo Tuple;
using IntClass = int64_t;
using DoubleClass = double;
using BoolClass = bool;
using NullClass = std::monostate;
using StringClass = FString;
/* complex types */
struct FunctionStruct;
using FunctionClass = FunctionStruct;
struct StructT;
using StructTypeClass = StructT;
struct StructInstanceT;
using StructInstanceClass = StructInstanceT;
}; // namespace ValueType
}; // namespace Fig

View File

@@ -0,0 +1,74 @@
#pragma once
#include <Value/BaseValue.hpp>
#include <Value/Type.hpp>
#include <Ast/functionParameters.hpp>
#include <atomic>
namespace Fig
{
/* complex objects */
struct FunctionStruct
{
std::size_t id;
Ast::FunctionParameters paras;
TypeInfo retType;
Ast::BlockStatement body;
FunctionStruct(Ast::FunctionParameters _paras, TypeInfo _retType, Ast::BlockStatement _body) :
id(nextId()), // 分配唯一 ID
paras(std::move(_paras)),
retType(std::move(_retType)),
body(std::move(_body))
{
}
FunctionStruct(const FunctionStruct &other) :
id(other.id), paras(other.paras), retType(other.retType), body(other.body) {}
FunctionStruct &operator=(const FunctionStruct &other) = default;
FunctionStruct(FunctionStruct &&) noexcept = default;
FunctionStruct &operator=(FunctionStruct &&) noexcept = default;
bool operator==(const FunctionStruct &other) const noexcept
{
return id == other.id;
}
bool operator!=(const FunctionStruct &other) const noexcept
{
return !(*this == other);
}
private:
static std::size_t nextId()
{
static std::atomic<std::size_t> counter{1};
return counter++;
}
};
class Function final : public __ValueWrapper<FunctionStruct>
{
public:
Function(const FunctionStruct &x) :
__ValueWrapper(ValueType::Function)
{
data = std::make_unique<FunctionStruct>(x);
}
Function(Ast::FunctionParameters paras, TypeInfo ret, Ast::BlockStatement body) :
__ValueWrapper(ValueType::Function)
{
data = std::make_unique<FunctionStruct>(
std::move(paras), std::move(ret), std::move(body));
}
bool operator==(const Function &other) const noexcept
{
if (!data || !other.data) return false;
return *data == *other.data; // call -> FunctionStruct::operator== (based on ID comparing)
}
Function(const Function &) = default;
Function(Function &&) noexcept = default;
Function &operator=(const Function &) = default;
Function &operator=(Function &&) noexcept = default;
};
} // namespace Fig

View File

@@ -0,0 +1,50 @@
#pragma once
#include <Value/BaseValue.hpp>
#include <context_forward.hpp>
namespace Fig
{
struct StructInstanceT final
{
FString structName; // 类的名字 (StructType), 非变量名。用于获取所属类
ContextPtr localContext;
StructInstanceT(FString _structName, ContextPtr _localContext) :
structName(std::move(_structName)), localContext(std::move(_localContext)) {}
StructInstanceT(const StructInstanceT &other) :
structName(other.structName), localContext(other.localContext) {}
StructInstanceT &operator=(const StructInstanceT &) = default;
StructInstanceT(StructInstanceT &&) = default;
StructInstanceT &operator=(StructInstanceT &&) = default;
bool operator==(const StructInstanceT &) const = default;
};
class StructInstance final : public __ValueWrapper<StructInstanceT>
{
public:
StructInstance(const StructInstanceT &x) :
__ValueWrapper(ValueType::StructInstance)
{
data = std::make_unique<StructInstanceT>(x);
}
StructInstance(FString _structName, ContextPtr _localContext) :
__ValueWrapper(ValueType::StructInstance)
{
data = std::make_unique<StructInstanceT>(std::move(_structName), std::move(_localContext));
}
bool operator==(const StructInstance &other) const noexcept
{
return data == other.data;
}
StructInstance(const StructInstance &) = default;
StructInstance(StructInstance &&) = default;
StructInstance &operator=(const StructInstance &) = default;
StructInstance &operator=(StructInstance &&) = default;
};
}; // namespace Fig

View File

@@ -0,0 +1,95 @@
#pragma once
#include <fig_string.hpp>
#include <Ast/StructDefSt.hpp>
#include <Value/Type.hpp>
#include <Value/BaseValue.hpp>
#include <context_forward.hpp>
#include <atomic>
namespace Fig
{
struct Field
{
bool isPublic() const
{
return am == AccessModifier::Public or am == AccessModifier::PublicConst or am == AccessModifier::PublicFinal;
}
bool isConst() const
{
return am == AccessModifier::Const or am == AccessModifier::PublicConst;
}
bool isFinal() const
{
return am == AccessModifier::Final or am == AccessModifier::PublicFinal;
}
AccessModifier am;
FString name;
TypeInfo type;
Ast::Expression defaultValue;
Field(AccessModifier _am, FString _name, TypeInfo _type, Ast::Expression _defaultValue) :
am(std::move(_am)), name(std::move(_name)), type(std::move(_type)), defaultValue(std::move(_defaultValue)) {}
};
struct StructT final// = StructType 结构体定义
{
std::size_t id;
ContextPtr defContext; // 定义时的上下文
std::vector<Field> fields;
StructT(ContextPtr _defContext, std::vector<Field> fieldsMap) :
defContext(std::move(_defContext)),
fields(std::move(fieldsMap))
{
id = nextId();
}
StructT(const StructT &other) :
id(other.id), fields(other.fields) {}
StructT &operator=(const StructT &other) = default;
StructT(StructT &&) noexcept = default;
StructT &operator=(StructT &&) noexcept = default;
bool operator==(const StructT &other) const noexcept
{
return id == other.id;
}
bool operator!=(const StructT &other) const noexcept
{
return !(*this == other);
}
private:
static std::size_t nextId()
{
static std::atomic<std::size_t> counter{1};
return counter++;
}
};
class StructType final : public __ValueWrapper<StructT>
{
public:
StructType(const StructT &x) :
__ValueWrapper(ValueType::StructType)
{
data = std::make_unique<StructT>(x);
}
StructType(ContextPtr _defContext, std::vector<Field> fieldsMap) :
__ValueWrapper(ValueType::StructType)
{
data = std::make_unique<StructT>(std::move(_defContext), std::move(fieldsMap));
}
bool operator==(const StructType &other) const noexcept
{
return data == other.data;
}
StructType(const StructType &) = default;
StructType(StructType &&) noexcept = default;
StructType &operator=(const StructType &) = default;
StructType &operator=(StructType &&) noexcept = default;
};
}; // namespace Fig

View File

@@ -0,0 +1,17 @@
#pragma once
#include <error.hpp>
namespace Fig
{
class ValueError : public UnaddressableError
{
public:
using UnaddressableError::UnaddressableError;
virtual FString toString() const override
{
std::string msg = std::format("[ValueError] {} in [{}] {}", std::string(this->message.begin(), this->message.end()), this->src_loc.file_name(), this->src_loc.function_name());
return FString(msg);
}
};
};

File diff suppressed because it is too large Load Diff

23
include/ast.hpp Normal file
View File

@@ -0,0 +1,23 @@
#pragma once
#include <Ast/astBase.hpp>
#include <Ast/AccessModifier.hpp>
#include <Ast/BinaryExpr.hpp>
#include <Ast/ContainerInitExprs.hpp>
#include <Ast/ControlSt.hpp>
#include <Ast/ExpressionStmt.hpp>
#include <Ast/FunctionCall.hpp>
#include <Ast/functionParameters.hpp>
#include <Ast/FunctionDefSt.hpp>
#include <Ast/IfSt.hpp>
#include <Ast/ImplementSt.hpp>
#include <Ast/InitExpr.hpp>
#include <Ast/LambdaExpr.hpp>
#include <Ast/StructDefSt.hpp>
#include <Ast/TernaryExpr.hpp>
#include <Ast/UnaryExpr.hpp>
#include <Ast/ValueExpr.hpp>
#include <Ast/VarAssignSt.hpp>
#include <Ast/VarDef.hpp>
#include <Ast/VarExpr.hpp>
#include <Ast/WhileSt.hpp>

152
include/builtins.hpp Normal file
View File

@@ -0,0 +1,152 @@
#pragma once
#include <fig_string.hpp>
#include <value.hpp>
#include <unordered_map>
#include <functional>
#include <vector>
#include <print>
#include <iostream>
namespace Fig
{
namespace Builtins
{
const std::unordered_map<FString, Value> builtinValues = {
{u8"null", Value::getNullInstance()},
{u8"true", Value(true)},
{u8"false", Value(false)},
};
using BuiltinFunction = std::function<Value(const std::vector<Value> &)>;
const std::unordered_map<FString, int> builtinFunctionArgCounts = {
{u8"__fstdout_print", -1}, // variadic
{u8"__fstdout_println", -1}, // variadic
{u8"__fstdin_read", 0},
{u8"__fstdin_readln", 0},
{u8"__fvalue_type", 1},
{u8"__fvalue_int_parse", 1},
{u8"__fvalue_int_from", 1},
{u8"__fvalue_double_parse", 1},
{u8"__fvalue_double_from", 1},
{u8"__fvalue_string_from", 1},
};
const std::unordered_map<FString, BuiltinFunction> builtinFunctions{
{u8"__fstdout_print", [](const std::vector<Value> &args) -> Value {
for (auto arg : args)
{
std::print("{}", arg.toString().toBasicString());
}
return Value(Int(args.size()));
}},
{u8"__fstdout_println", [](const std::vector<Value> &args) -> Value {
for (auto arg : args)
{
std::print("{}", arg.toString().toBasicString());
}
std::print("\n");
return Value(Int(args.size()));
}},
{u8"__fstdin_read", [](const std::vector<Value> &args) -> Value {
std::string input;
std::cin >> input;
return Value(FString::fromBasicString(input));
}},
{u8"__fstdin_readln", [](const std::vector<Value> &args) -> Value {
std::string line;
std::getline(std::cin, line);
return Value(FString::fromBasicString(line));
}},
{u8"__fvalue_type", [](const std::vector<Value> &args) -> Value {
return Value(args[0].getTypeInfo().toString());
}},
{u8"__fvalue_int_parse", [](const std::vector<Value> &args) -> Value {
FString str = args[0].as<String>().getValue();
try
{
ValueType::IntClass val = std::stoi(str.toBasicString());
return Value(Int(val));
}
catch (...)
{
throw RuntimeError(FStringView(std::format("Invalid int string for parsing", str.toBasicString())));
}
}},
{u8"__fvalue_int_from", [](const std::vector<Value> &args) -> Value {
Value val = args[0];
if (val.is<Double>())
{
return Value(Int(static_cast<ValueType::IntClass>(val.as<Double>().getValue())));
}
else if (val.is<Bool>())
{
return Value(Int(val.as<Bool>().getValue() ? 1 : 0));
}
else
{
throw RuntimeError(FStringView(std::format("Type '{}' cannot be converted to int", val.getTypeInfo().toString().toBasicString())));
}
}},
{u8"__fvalue_double_parse", [](const std::vector<Value> &args) -> Value {
FString str = args[0].as<String>().getValue();
try
{
ValueType::DoubleClass val = std::stod(str.toBasicString());
return Value(Double(val));
}
catch (...)
{
throw RuntimeError(FStringView(std::format("Invalid double string for parsing", str.toBasicString())));
}
}},
{u8"__fvalue_double_from", [](const std::vector<Value> &args) -> Value {
Value val = args[0];
if (val.is<Int>())
{
return Value(Double(static_cast<ValueType::DoubleClass>(val.as<Int>().getValue())));
}
else if (val.is<Bool>())
{
return Value(Double(val.as<Bool>().getValue() ? 1.0 : 0.0));
}
else
{
throw RuntimeError(FStringView(std::format("Type '{}' cannot be converted to double", val.getTypeInfo().toString().toBasicString())));
}
}},
{u8"__fvalue_string_from", [](const std::vector<Value> &args) -> Value {
Value val = args[0];
return Value(val.toString());
}},
};
inline bool isBuiltinFunction(const FString &name)
{
return builtinFunctions.find(name) != builtinFunctions.end();
}
inline BuiltinFunction getBuiltinFunction(const FString &name)
{
auto it = builtinFunctions.find(name);
if (it == builtinFunctions.end())
{
throw RuntimeError(FStringView(std::format("Builtin function '{}' not found", name.toBasicString())));
}
return it->second;
}
inline int getBuiltinFunctionParamCount(const FString &name)
{
auto it = builtinFunctionArgCounts.find(name);
if (it == builtinFunctionArgCounts.end())
{
throw RuntimeError(FStringView(std::format("Builtin function '{}' not found", name.toBasicString())));
}
return it->second;
}
}; // namespace Builtins
}; // namespace Fig

168
include/context.hpp Normal file
View File

@@ -0,0 +1,168 @@
#pragma once
#include <unordered_map>
#include <iostream>
#include <algorithm>
#include <context_forward.hpp>
#include <fig_string.hpp>
#include <value.hpp>
namespace Fig
{
struct Context
{
private:
FString scopeName;
std::unordered_map<FString, TypeInfo> varTypes;
std::unordered_map<FString, Value> variables;
std::unordered_map<FString, AccessModifier> ams;
public:
ContextPtr parent;
Context(const Context &) = default;
Context(const FString &name, ContextPtr p = nullptr) :
scopeName(name), parent(p) {}
Context(const FString &name, std::unordered_map<FString, TypeInfo> types, std::unordered_map<FString, Value> vars, std::unordered_map<FString, AccessModifier> _ams) :
scopeName(std::move(name)), varTypes(std::move(types)), variables(std::move(vars)), ams(std::move(_ams)) {}
void setParent(ContextPtr _parent)
{
parent = _parent;
}
void setScopeName(FString _name)
{
scopeName = std::move(_name);
}
FString getScopeName() const
{
return scopeName;
}
std::optional<Value> get(const FString &name)
{
auto it = variables.find(name);
if (it != variables.end())
return it->second;
if (parent)
return parent->get(name);
return std::nullopt;
}
AccessModifier getAccessModifier(const FString &name)
{
if (variables.contains(name))
{
return ams[name];
}
else if (parent != nullptr)
{
return parent->getAccessModifier(name);
}
else
{
throw RuntimeError(FStringView(std::format("Variable '{}' not defined", name.toBasicString())));
}
}
ContextPtr createCopyWithPublicVariables()
{
std::unordered_map<FString, TypeInfo> _varTypes;
std::unordered_map<FString, Value> _variables;
std::unordered_map<FString, AccessModifier> _ams;
for (const auto &p : this->variables)
{
if (isVariablePublic(p.first))
{
_variables[p.first] = p.second;
_varTypes[p.first] = varTypes[p.first];
_ams[p.first] = ams[p.first];
}
}
return std::make_shared<Context>(this->scopeName, _varTypes, _variables, _ams);
}
bool isVariableMutable(const FString &name)
{
AccessModifier am = getAccessModifier(name); // may throw
return am == AccessModifier::Normal or am == AccessModifier::Public;
}
bool isVariablePublic(const FString &name)
{
AccessModifier am = getAccessModifier(name); // may throw
return am == AccessModifier::Public or am == AccessModifier::PublicConst or am == AccessModifier::PublicFinal;
}
void set(const FString &name, const Value &value)
{
if (variables.contains(name))
{
if (!isVariableMutable(name))
{
throw RuntimeError(FStringView(std::format("Variable '{}' is immutable", name.toBasicString())));
}
variables[name] = value;
}
else if (parent != nullptr)
{
parent->set(name, value);
}
else
{
throw RuntimeError(FStringView(std::format("Variable '{}' not defined", name.toBasicString())));
}
}
void def(const FString &name, const TypeInfo &ti, AccessModifier am, const Value &value = Any())
{
if (variables.contains(name))
{
throw RuntimeError(FStringView(std::format("Variable '{}' already defined in this scope", name.toBasicString())));
}
variables[name] = value;
varTypes[name] = ti;
ams[name] = am;
}
bool contains(const FString &name)
{
if (variables.contains(name))
{
return true;
}
else if (parent != nullptr)
{
return parent->contains(name);
}
return false;
}
TypeInfo getTypeInfo(const FString &name)
{
if (varTypes.contains(name))
{
return varTypes[name];
}
else if (parent != nullptr)
{
return parent->getTypeInfo(name);
}
throw RuntimeError(FStringView(std::format("Variable '{}' not defined", name.toBasicString())));
}
void printStackTrace(std::ostream &os = std::cerr, int indent = 0) const
{
const Context *ctx = this;
std::vector<const Context *> chain;
while (ctx)
{
chain.push_back(ctx);
ctx = ctx->parent.get();
}
os << "[STACK TRACE]\n";
for (int i = static_cast<int>(chain.size()) - 1; i >= 0; --i)
{
os << " #" << (chain.size() - 1 - i)
<< " " << chain[i]->scopeName.toBasicString()
<< "\n";
}
}
};
}; // namespace Fig

View File

@@ -0,0 +1,9 @@
#pragma once
#include <memory>
namespace Fig
{
struct Context;
using ContextPtr = std::shared_ptr<Context>;
};

59
include/core.hpp Normal file
View File

@@ -0,0 +1,59 @@
#pragma once
#include <fig_string.hpp>
#include <cstdint>
#include <string_view>
#define __FCORE_VERSION "0.3.1"
#if defined(_WIN32)
#define __FCORE_PLATFORM "Windows"
#elif defined(__APPLE__)
#define __FCORE_PLATFORM "Apple"
#elif defined(__linux__)
#define __FCORE_PLATFORM "Linux"
#elif defined(__unix__)
#define __FCORE_PLATFORM "Unix"
#else
#define __FCORE_PLATFORM "Unknown"
#endif
#if defined(__GNUC__)
#if defined(_WIN32)
#if defined(__clang__)
#define __FCORE_COMPILER "llvm-mingw"
#else
#define __FCORE_COMPILER "MinGW"
#endif
#else
#define __FCORE_COMPILER "GCC"
#endif
#elif defined(__clang__)
#define __FCORE_COMPILER "Clang"
#elif defined(_MSC_VER)
#define __FCORE_COMPILER "MSVC"
#else
#define __FCORE_COMPILER "Unknown"
#endif
#if SIZE_MAX == 18446744073709551615ull
#define __FCORE_ARCH "64"
#else
#define __FCORE_ARCH "86"
#endif
namespace Fig
{
namespace Core
{
inline constexpr std::string_view VERSION = __FCORE_VERSION;
inline constexpr std::string_view LICENSE = "MIT";
inline constexpr std::string_view AUTHOR = "PuqiAR";
inline constexpr std::string_view PLATFORM = __FCORE_PLATFORM;
inline constexpr std::string_view COMPILER = __FCORE_COMPILER;
inline constexpr std::string_view COMPILE_TIME = __FCORE_COMPILE_TIME;
inline constexpr std::string_view ARCH = __FCORE_ARCH;
inline constexpr FString MAIN_FUNCTION = u8"main";
}; // namespace Core
}; // namespace Fig

128
include/error.hpp Normal file
View File

@@ -0,0 +1,128 @@
#pragma once
#include <fig_string.hpp>
#include <exception>
#include <format>
#include <source_location>
#include <string>
namespace Fig
{
class AddressableError : public std::exception
{
public:
explicit AddressableError() {}
explicit AddressableError(FStringView _msg,
size_t _line,
size_t _column,
std::source_location loc = std::source_location::current()) :
src_loc(loc), line(_line), column(_column)
{
message = _msg;
}
virtual FString toString() const
{
std::string msg = std::format("[AddressableError] {} at {}:{}, in [{}] {}", std::string(this->message.begin(), this->message.end()), this->line, this->column, this->src_loc.file_name(), this->src_loc.function_name());
return FString(msg);
}
const char *what() const noexcept override
{
static std::string msg = toString().toBasicString();
return msg.c_str();
}
std::source_location src_loc;
size_t getLine() const { return line; }
size_t getColumn() const { return column; }
FStringView getMessage() const { return message; }
virtual FString getErrorType() const
{
return FString(u8"AddressableError");
}
protected:
size_t line, column;
FStringView message;
};
class UnaddressableError : public std::exception
{
public:
explicit UnaddressableError() {}
explicit UnaddressableError(FStringView _msg,
std::source_location loc = std::source_location::current()) :
src_loc(loc)
{
message = _msg;
}
virtual FString toString() const
{
std::string msg = std::format("[UnaddressableError] {} in [{}] {}", std::string(this->message.begin(), this->message.end()), this->src_loc.file_name(), this->src_loc.function_name());
return FString(msg);
}
const char *what() const noexcept override
{
static std::string msg = toString().toBasicString();
return msg.c_str();
}
std::source_location src_loc;
FStringView getMessage() const { return message; }
virtual FString getErrorType() const
{
return FString(u8"UnaddressableError");
}
protected:
FStringView message;
};
class SyntaxError : public AddressableError
{
public:
using AddressableError::AddressableError;
explicit SyntaxError(FStringView _msg,
size_t _line,
size_t _column,
std::source_location loc = std::source_location::current()) :
AddressableError(_msg, _line, _column, loc)
{
}
virtual FString toString() const override
{
std::string msg = std::format("[SyntaxError] {} in [{}] {}", std::string(this->message.begin(), this->message.end()), this->src_loc.file_name(), this->src_loc.function_name());
return FString(msg);
}
virtual FString getErrorType() const override
{
return FString(u8"SyntaxError");
}
};
class RuntimeError final : public UnaddressableError
{
public:
using UnaddressableError::UnaddressableError;
explicit RuntimeError(FStringView _msg,
std::source_location loc = std::source_location::current()) :
UnaddressableError(_msg, loc)
{
}
virtual FString toString() const override
{
std::string msg = std::format("[RuntimeError] {} in [{}] {}", std::string(this->message.begin(), this->message.end()), this->src_loc.file_name(), this->src_loc.function_name());
return FString(msg);
}
virtual FString getErrorType() const override
{
return FString(u8"RuntimeError");
}
};
} // namespace Fig

140
include/errorLog.hpp Normal file
View File

@@ -0,0 +1,140 @@
#pragma once
#include <error.hpp>
#include <core.hpp>
#include <print>
#include <vector>
namespace Fig
{
namespace ErrorLog
{
namespace TerminalColors
{
constexpr const char *Reset = "\033[0m";
constexpr const char *Bold = "\033[1m";
constexpr const char *Dim = "\033[2m";
constexpr const char *Italic = "\033[3m";
constexpr const char *Underline = "\033[4m";
constexpr const char *Blink = "\033[5m";
constexpr const char *Reverse = "\033[7m"; // 前背景反色
constexpr const char *Hidden = "\033[8m"; // 隐藏文本
constexpr const char *Strike = "\033[9m"; // 删除线
constexpr const char *Black = "\033[30m";
constexpr const char *Red = "\033[31m";
constexpr const char *Green = "\033[32m";
constexpr const char *Yellow = "\033[33m";
constexpr const char *Blue = "\033[34m";
constexpr const char *Magenta = "\033[35m";
constexpr const char *Cyan = "\033[36m";
constexpr const char *White = "\033[37m";
constexpr const char *LightBlack = "\033[90m";
constexpr const char *LightRed = "\033[91m";
constexpr const char *LightGreen = "\033[92m";
constexpr const char *LightYellow = "\033[93m";
constexpr const char *LightBlue = "\033[94m";
constexpr const char *LightMagenta = "\033[95m";
constexpr const char *LightCyan = "\033[96m";
constexpr const char *LightWhite = "\033[97m";
constexpr const char *DarkRed = "\033[38;2;128;0;0m";
constexpr const char *DarkGreen = "\033[38;2;0;100;0m";
constexpr const char *DarkYellow = "\033[38;2;128;128;0m";
constexpr const char *DarkBlue = "\033[38;2;0;0;128m";
constexpr const char *DarkMagenta = "\033[38;2;100;0;100m";
constexpr const char *DarkCyan = "\033[38;2;0;128;128m";
constexpr const char *DarkGray = "\033[38;2;64;64;64m";
constexpr const char *Gray = "\033[38;2;128;128;128m";
constexpr const char *Silver = "\033[38;2;192;192;192m";
constexpr const char *Navy = "\033[38;2;0;0;128m";
constexpr const char *RoyalBlue = "\033[38;2;65;105;225m";
constexpr const char *ForestGreen = "\033[38;2;34;139;34m";
constexpr const char *Olive = "\033[38;2;128;128;0m";
constexpr const char *Teal = "\033[38;2;0;128;128m";
constexpr const char *Maroon = "\033[38;2;128;0;0m";
constexpr const char *Purple = "\033[38;2;128;0;128m";
constexpr const char *Orange = "\033[38;2;255;165;0m";
constexpr const char *Gold = "\033[38;2;255;215;0m";
constexpr const char *Pink = "\033[38;2;255;192;203m";
constexpr const char *Crimson = "\033[38;2;220;20;60m";
constexpr const char *OnBlack = "\033[40m";
constexpr const char *OnRed = "\033[41m";
constexpr const char *OnGreen = "\033[42m";
constexpr const char *OnYellow = "\033[43m";
constexpr const char *OnBlue = "\033[44m";
constexpr const char *OnMagenta = "\033[45m";
constexpr const char *OnCyan = "\033[46m";
constexpr const char *OnWhite = "\033[47m";
constexpr const char *OnLightBlack = "\033[100m";
constexpr const char *OnLightRed = "\033[101m";
constexpr const char *OnLightGreen = "\033[102m";
constexpr const char *OnLightYellow = "\033[103m";
constexpr const char *OnLightBlue = "\033[104m";
constexpr const char *OnLightMagenta = "\033[105m";
constexpr const char *OnLightCyan = "\033[106m";
constexpr const char *OnLightWhite = "\033[107m";
constexpr const char *OnDarkBlue = "\033[48;2;0;0;128m";
constexpr const char *OnGreenYellow = "\033[48;2;173;255;47m";
constexpr const char *OnOrange = "\033[48;2;255;165;0m";
constexpr const char *OnGray = "\033[48;2;128;128;128m";
}; // namespace TerminalColors
inline void coloredPrint(const char *colorCode, FString msg)
{
std::print("{}{}{}", colorCode, msg.toBasicString(), TerminalColors::Reset);
}
inline void coloredPrint(const char *colorCode, std::string msg)
{
std::print("{}{}{}", colorCode, msg, TerminalColors::Reset);
}
inline void logAddressableError(const AddressableError &err, FString fileName, std::vector<FString> sourceLines)
{
std::print("\n");
namespace TC = TerminalColors;
coloredPrint(TC::LightWhite, "An error occurred! ");
coloredPrint(TC::White, std::format("Fig {} ({})[{} {} bit on `{}`]\n",Core::VERSION, Core::COMPILE_TIME, Core::COMPILER, Core::ARCH, Core::PLATFORM));
coloredPrint(TC::LightRed, "");
coloredPrint(TC::LightRed, std::format("{}: {}\n", err.getErrorType().toBasicString(), FString(err.getMessage()).toBasicString()));
coloredPrint(TC::White, std::format(" at {}:{} in file '{}'\n", err.getLine(), err.getColumn(), fileName.toBasicString()));
FString lineContent = ((int64_t(err.getLine()) - int64_t(1)) >= 0 ? sourceLines[err.getLine() - 1] : u8"<No Source>");
coloredPrint(TC::LightBlue, std::format(" {}\n", lineContent.toBasicString()));
FString pointerLine;
for (size_t i = 1; i < err.getColumn(); ++i)
{
if (lineContent[i - 1] == U'\t')
{
pointerLine += U'\t';
}
else
{
pointerLine += U' ';
}
}
pointerLine += U'^';
coloredPrint(TC::LightGreen, std::format(" {}\n", pointerLine.toBasicString()));
coloredPrint(TC::DarkGray, std::format("🔧 in function '{}' ({}:{})\n", err.src_loc.function_name(), err.src_loc.file_name(), err.src_loc.line()));
}
inline void logUnaddressableError(const UnaddressableError &err)
{
std::print("\n");
namespace TC = TerminalColors;
coloredPrint(TC::LightWhite, "An error occurred! ");
coloredPrint(TC::White, std::format("Fig {} ({})[{} {} bit on `{}`]\n", Core::VERSION, Core::COMPILE_TIME, Core::COMPILER, Core::ARCH, Core::PLATFORM));
coloredPrint(TC::DarkRed, "");
coloredPrint(TC::Red, std::format("{}: {}\n", err.getErrorType().toBasicString(), FString(err.getMessage()).toBasicString()));
coloredPrint(TC::DarkGray, std::format("🔧 in function '{}' ({}:{})", err.src_loc.function_name(), err.src_loc.file_name(), err.src_loc.line()));
}
}; // namespace ErrorLog
}; // namespace Fig

103
include/evaluator.hpp Normal file
View File

@@ -0,0 +1,103 @@
#pragma once
#include <unordered_map>
#include <optional>
#include <error.hpp>
#include <fig_string.hpp>
#include <ast.hpp>
#include <value.hpp>
#include <context.hpp>
#include <parser.hpp>
namespace Fig
{
template <const char *errName>
class EvaluatorError final : public AddressableError
{
public:
virtual FString toString() const override
{
std::string msg = std::format("[Eve: {}] {} in [{}] {}", errName, std::string(this->message.begin(), this->message.end()), this->src_loc.file_name(), this->src_loc.function_name());
return FString(msg);
}
using AddressableError::AddressableError;
explicit EvaluatorError(FStringView _msg,
Ast::AstAddressInfo aai,
std::source_location loc = std::source_location::current()) :
AddressableError(_msg, aai.line, aai.column, loc)
{
}
};
struct StatementResult
{
Value result;
enum class Flow
{
Normal,
Return,
Break,
Continue
} flow;
StatementResult(Value val, Flow f = Flow::Normal) :
result(val), flow(f)
{
}
static StatementResult normal(Value val = Value::getNullInstance())
{
return StatementResult(val, Flow::Normal);
}
static StatementResult returnFlow(Value val)
{
return StatementResult(val, Flow::Return);
}
static StatementResult breakFlow()
{
return StatementResult(Value::getNullInstance(), Flow::Break);
}
static StatementResult continueFlow()
{
return StatementResult(Value::getNullInstance(), Flow::Continue);
}
bool isNormal() const { return flow == Flow::Normal; }
bool shouldReturn() const { return flow == Flow::Return; }
bool shouldBreak() const { return flow == Flow::Break; }
bool shouldContinue() const { return flow == Flow::Continue; }
};
class Evaluator
{
private:
std::vector<Ast::AstBase> asts;
std::shared_ptr<Context> globalContext;
std::shared_ptr<Context> currentContext;
Ast::AstAddressInfo currentAddressInfo;
public:
Evaluator(const std::vector<Ast::AstBase> &a) :
asts(a)
{
globalContext = std::make_shared<Context>(FString(u8"global"));
currentContext = globalContext;
}
std::shared_ptr<Context> getCurrentContext() { return currentContext; }
std::shared_ptr<Context> getGlobalContext() { return globalContext; }
Value __evalOp(Ast::Operator, const Value &, const Value & = Value::getNullInstance());
Value evalBinary(const Ast::BinaryExpr &);
Value evalUnary(const Ast::UnaryExpr &);
StatementResult evalStatement(const Ast::Statement &);
Value eval(Ast::Expression);
void run();
void printStackTrace() const;
};
} // namespace Fig

3
include/fassert.hpp Normal file
View File

@@ -0,0 +1,3 @@
#pragma once
#define fassert(exp,msg) (if(!exp) throw msg;)

100
include/fig_string.hpp Normal file
View File

@@ -0,0 +1,100 @@
#pragma once
#include <string>
#include <string_view>
namespace Fig
{
// using String = std::u8string;
// using StringView = std::u8string_view;
class FStringView : public std::u8string_view
{
public:
using std::u8string_view::u8string_view;
static FStringView fromBasicStringView(std::string_view sv)
{
return FStringView(reinterpret_cast<const char8_t*>(sv.data()), sv.size());
}
explicit FStringView(std::string_view sv)
{
*this = fromBasicStringView(sv);
}
explicit FStringView()
{
*this = fromBasicStringView(std::string_view(""));
}
};
class FString : public std::u8string
{
public:
using std::u8string::u8string;
explicit FString(const std::u8string &str)
{
*this = fromU8String(str);
}
explicit FString(std::string str)
{
*this = fromBasicString(str);
}
explicit FString(FStringView sv)
{
*this = fromStringView(sv);
}
std::string toBasicString() const
{
return std::string(this->begin(), this->end());
}
FStringView toStringView() const
{
return FStringView(this->data(), this->size());
}
static FString fromBasicString(const std::string &str)
{
return FString(str.begin(), str.end());
}
static FString fromStringView(FStringView sv)
{
return FString(reinterpret_cast<const char*> (sv.data()));
}
static FString fromU8String(const std::u8string &str)
{
return FString(str.begin(), str.end());
}
size_t length()
{
// get UTF8-String real length
size_t len = 0;
for (auto it = this->begin(); it != this->end(); ++it)
{
if ((*it & 0xC0) != 0x80)
{
++len;
}
}
return len;
}
};
}; // namespace Fig
namespace std
{
template <>
struct hash<Fig::FString>
{
std::size_t operator()(const Fig::FString &s) const
{
return std::hash<std::u8string>{}(static_cast<const std::u8string &>(s));
}
};
}

95
include/lexer.hpp Normal file
View File

@@ -0,0 +1,95 @@
#pragma once
#include <corecrt.h>
#include <cuchar>
#include <cwctype>
#include <unordered_map>
#include <vector>
#include <token.hpp>
#include <error.hpp>
#include <fig_string.hpp>
#include <utf8_iterator.hpp>
#include <warning.hpp>
namespace Fig
{
class Lexer final
{
private:
size_t line;
const FString source;
SyntaxError error;
UTF8Iterator it;
std::vector<Warning> warnings;
size_t last_line, last_column, column = 1;
bool hasNext()
{
return !this->it.isEnd();
}
void skipLine();
inline void next()
{
if (*it == U'\n')
{
++this->line;
this->column = 1;
}
else
{
++this->column;
}
++it;
}
void pushWarning(size_t id, FString msg)
{
warnings.push_back(Warning(id, std::move(msg), getCurrentLine(), getCurrentColumn()));
}
void pushWarning(size_t id, FString msg, size_t line, size_t column)
{
warnings.push_back(Warning(id, std::move(msg), line, column));
}
public:
static const std::unordered_map<FString, TokenType> symbol_map;
static const std::unordered_map<FString, TokenType> keyword_map;
inline Lexer(const FString &_source) :
source(_source), it(source)
{
line = 1;
}
inline size_t getCurrentLine()
{
return line;
}
inline size_t getCurrentColumn()
{
return column;
}
SyntaxError getError() const
{
return error;
}
std::vector<Warning> getWarnings() const
{
return warnings;
}
Token nextToken();
Token scanNumber();
Token scanString();
Token scanRawString();
Token scanMultilineString();
Token scanIdentifier();
Token scanSymbol();
Token scanComments();
};
} // namespace Fig

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,44 @@
// __ __ _ ______ _____
// | \/ | (_) | ____| / ____|_ _
// | \ / | __ _ __ _ _ ___ | |__ _ __ _ _ _ __ ___ | | _| |_ _| |_
// | |\/| |/ _` |/ _` | |/ __| | __| | '_ \| | | | '_ ` _ \ | | |_ _|_ _|
// | | | | (_| | (_| | | (__ | |____| | | | |_| | | | | | | | |____|_| |_|
// |_| |_|\__,_|\__, |_|\___| |______|_| |_|\__,_|_| |_| |_| \_____|
// __/ | https://github.com/Neargye/magic_enum
// |___/ version 0.9.7
//
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
// SPDX-License-Identifier: MIT
// Copyright (c) 2019 - 2024 Daniil Goncharov <neargye@gmail.com>.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef NEARGYE_MAGIC_ENUM_ALL_HPP
#define NEARGYE_MAGIC_ENUM_ALL_HPP
#include "magic_enum.hpp"
#include "magic_enum_containers.hpp"
#include "magic_enum_flags.hpp"
#include "magic_enum_format.hpp"
#include "magic_enum_fuse.hpp"
#include "magic_enum_iostream.hpp"
#include "magic_enum_switch.hpp"
#include "magic_enum_utility.hpp"
#endif // NEARGYE_MAGIC_ENUM_ALL_HPP

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,222 @@
// __ __ _ ______ _____
// | \/ | (_) | ____| / ____|_ _
// | \ / | __ _ __ _ _ ___ | |__ _ __ _ _ _ __ ___ | | _| |_ _| |_
// | |\/| |/ _` |/ _` | |/ __| | __| | '_ \| | | | '_ ` _ \ | | |_ _|_ _|
// | | | | (_| | (_| | | (__ | |____| | | | |_| | | | | | | | |____|_| |_|
// |_| |_|\__,_|\__, |_|\___| |______|_| |_|\__,_|_| |_| |_| \_____|
// __/ | https://github.com/Neargye/magic_enum
// |___/ version 0.9.7
//
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
// SPDX-License-Identifier: MIT
// Copyright (c) 2019 - 2024 Daniil Goncharov <neargye@gmail.com>.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef NEARGYE_MAGIC_ENUM_FLAGS_HPP
#define NEARGYE_MAGIC_ENUM_FLAGS_HPP
#include "magic_enum.hpp"
#if defined(__clang__)
# pragma clang diagnostic push
#elif defined(__GNUC__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wmaybe-uninitialized" // May be used uninitialized 'return {};'.
#elif defined(_MSC_VER)
# pragma warning(push)
#endif
namespace magic_enum {
namespace detail {
template <typename E, enum_subtype S, typename U = std::underlying_type_t<E>>
constexpr U values_ors() noexcept {
static_assert(S == enum_subtype::flags, "magic_enum::detail::values_ors requires valid subtype.");
auto ors = U{0};
for (std::size_t i = 0; i < count_v<E, S>; ++i) {
ors |= static_cast<U>(values_v<E, S>[i]);
}
return ors;
}
} // namespace magic_enum::detail
// Returns name from enum-flags value.
// If enum-flags value does not have name or value out of range, returns empty string.
template <typename E>
[[nodiscard]] auto enum_flags_name(E value, char_type sep = static_cast<char_type>('|')) -> detail::enable_if_t<E, string> {
using D = std::decay_t<E>;
using U = underlying_type_t<D>;
constexpr auto S = detail::enum_subtype::flags;
static_assert(detail::is_reflected_v<D, S>, "magic_enum requires enum implementation and valid max and min.");
string name;
auto check_value = U{0};
for (std::size_t i = 0; i < detail::count_v<D, S>; ++i) {
if (const auto v = static_cast<U>(enum_value<D, S>(i)); (static_cast<U>(value) & v) != 0) {
if (const auto n = detail::names_v<D, S>[i]; !n.empty()) {
check_value |= v;
if (!name.empty()) {
name.append(1, sep);
}
name.append(n.data(), n.size());
} else {
return {}; // Value out of range.
}
}
}
if (check_value != 0 && check_value == static_cast<U>(value)) {
return name;
}
return {}; // Invalid value or out of range.
}
// Obtains enum-flags value from integer value.
// Returns optional with enum-flags value.
template <typename E>
[[nodiscard]] constexpr auto enum_flags_cast(underlying_type_t<E> value) noexcept -> detail::enable_if_t<E, optional<std::decay_t<E>>> {
using D = std::decay_t<E>;
using U = underlying_type_t<D>;
constexpr auto S = detail::enum_subtype::flags;
static_assert(detail::is_reflected_v<D, S>, "magic_enum requires enum implementation and valid max and min.");
if constexpr (detail::count_v<D, S> == 0) {
static_cast<void>(value);
return {}; // Empty enum.
} else {
if constexpr (detail::is_sparse_v<D, S>) {
auto check_value = U{0};
for (std::size_t i = 0; i < detail::count_v<D, S>; ++i) {
if (const auto v = static_cast<U>(enum_value<D, S>(i)); (value & v) != 0) {
check_value |= v;
}
}
if (check_value != 0 && check_value == value) {
return static_cast<D>(value);
}
} else {
constexpr auto min = detail::min_v<D, S>;
constexpr auto max = detail::values_ors<D, S>();
if (value >= min && value <= max) {
return static_cast<D>(value);
}
}
return {}; // Invalid value or out of range.
}
}
// Obtains enum-flags value from name.
// Returns optional with enum-flags value.
template <typename E, typename BinaryPredicate = std::equal_to<>>
[[nodiscard]] constexpr auto enum_flags_cast(string_view value, [[maybe_unused]] BinaryPredicate p = {}) noexcept(detail::is_nothrow_invocable<BinaryPredicate>()) -> detail::enable_if_t<E, optional<std::decay_t<E>>, BinaryPredicate> {
using D = std::decay_t<E>;
using U = underlying_type_t<D>;
constexpr auto S = detail::enum_subtype::flags;
static_assert(detail::is_reflected_v<D, S>, "magic_enum requires enum implementation and valid max and min.");
if constexpr (detail::count_v<D, S> == 0) {
static_cast<void>(value);
return {}; // Empty enum.
} else {
auto result = U{0};
while (!value.empty()) {
const auto d = detail::find(value, '|');
const auto s = (d == string_view::npos) ? value : value.substr(0, d);
auto f = U{0};
for (std::size_t i = 0; i < detail::count_v<D, S>; ++i) {
if (detail::cmp_equal(s, detail::names_v<D, S>[i], p)) {
f = static_cast<U>(enum_value<D, S>(i));
result |= f;
break;
}
}
if (f == U{0}) {
return {}; // Invalid value or out of range.
}
value.remove_prefix((d == string_view::npos) ? value.size() : d + 1);
}
if (result != U{0}) {
return static_cast<D>(result);
}
return {}; // Invalid value or out of range.
}
}
// Checks whether enum-flags contains value with such value.
template <typename E>
[[nodiscard]] constexpr auto enum_flags_contains(E value) noexcept -> detail::enable_if_t<E, bool> {
using D = std::decay_t<E>;
using U = underlying_type_t<D>;
return static_cast<bool>(enum_flags_cast<D>(static_cast<U>(value)));
}
// Checks whether enum-flags contains value with such integer value.
template <typename E>
[[nodiscard]] constexpr auto enum_flags_contains(underlying_type_t<E> value) noexcept -> detail::enable_if_t<E, bool> {
using D = std::decay_t<E>;
return static_cast<bool>(enum_flags_cast<D>(value));
}
// Checks whether enum-flags contains enumerator with such name.
template <typename E, typename BinaryPredicate = std::equal_to<>>
[[nodiscard]] constexpr auto enum_flags_contains(string_view value, BinaryPredicate p = {}) noexcept(detail::is_nothrow_invocable<BinaryPredicate>()) -> detail::enable_if_t<E, bool, BinaryPredicate> {
using D = std::decay_t<E>;
return static_cast<bool>(enum_flags_cast<D>(value, std::move(p)));
}
// Checks whether `flags set` contains `flag`.
// Note: If `flag` equals 0, it returns false, as 0 is not a flag.
template <typename E>
constexpr auto enum_flags_test(E flags, E flag) noexcept -> detail::enable_if_t<E, bool> {
using U = underlying_type_t<E>;
return static_cast<U>(flag) && ((static_cast<U>(flags) & static_cast<U>(flag)) == static_cast<U>(flag));
}
// Checks whether `lhs flags set` and `rhs flags set` have common flags.
// Note: If `lhs flags set` or `rhs flags set` equals 0, it returns false, as 0 is not a flag, and therfore cannot have any matching flag.
template <typename E>
constexpr auto enum_flags_test_any(E lhs, E rhs) noexcept -> detail::enable_if_t<E, bool> {
using U = underlying_type_t<E>;
return (static_cast<U>(lhs) & static_cast<U>(rhs)) != 0;
}
} // namespace magic_enum
#if defined(__clang__)
# pragma clang diagnostic pop
#elif defined(__GNUC__)
# pragma GCC diagnostic pop
#elif defined(_MSC_VER)
# pragma warning(pop)
#endif
#endif // NEARGYE_MAGIC_ENUM_FLAGS_HPP

View File

@@ -0,0 +1,114 @@
// __ __ _ ______ _____
// | \/ | (_) | ____| / ____|_ _
// | \ / | __ _ __ _ _ ___ | |__ _ __ _ _ _ __ ___ | | _| |_ _| |_
// | |\/| |/ _` |/ _` | |/ __| | __| | '_ \| | | | '_ ` _ \ | | |_ _|_ _|
// | | | | (_| | (_| | | (__ | |____| | | | |_| | | | | | | | |____|_| |_|
// |_| |_|\__,_|\__, |_|\___| |______|_| |_|\__,_|_| |_| |_| \_____|
// __/ | https://github.com/Neargye/magic_enum
// |___/ version 0.9.7
//
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
// SPDX-License-Identifier: MIT
// Copyright (c) 2019 - 2024 Daniil Goncharov <neargye@gmail.com>.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef NEARGYE_MAGIC_ENUM_FORMAT_HPP
#define NEARGYE_MAGIC_ENUM_FORMAT_HPP
#include "magic_enum.hpp"
#include "magic_enum_flags.hpp"
#if !defined(MAGIC_ENUM_DEFAULT_ENABLE_ENUM_FORMAT)
# define MAGIC_ENUM_DEFAULT_ENABLE_ENUM_FORMAT 1
# define MAGIC_ENUM_DEFAULT_ENABLE_ENUM_FORMAT_AUTO_DEFINE
#endif
namespace magic_enum::customize {
// customize enum to enable/disable automatic std::format
template <typename E>
constexpr bool enum_format_enabled() noexcept {
return MAGIC_ENUM_DEFAULT_ENABLE_ENUM_FORMAT;
}
} // magic_enum::customize
#if defined(__cpp_lib_format)
#ifndef MAGIC_ENUM_USE_STD_MODULE
#include <format>
#endif
template <typename E>
struct std::formatter<E, std::enable_if_t<std::is_enum_v<std::decay_t<E>> && magic_enum::customize::enum_format_enabled<E>(), char>> : std::formatter<std::string_view, char> {
template <class FormatContext>
auto format(E e, FormatContext& ctx) const {
static_assert(std::is_same_v<char, string_view::value_type>, "formatter requires string_view::value_type type same as char.");
using D = std::decay_t<E>;
if constexpr (magic_enum::detail::supported<D>::value) {
if constexpr (magic_enum::detail::subtype_v<D> == magic_enum::detail::enum_subtype::flags) {
if (const auto name = magic_enum::enum_flags_name<D>(e); !name.empty()) {
return formatter<std::string_view, char>::format(std::string_view{name.data(), name.size()}, ctx);
}
} else {
if (const auto name = magic_enum::enum_name<D>(e); !name.empty()) {
return formatter<std::string_view, char>::format(std::string_view{name.data(), name.size()}, ctx);
}
}
}
return formatter<std::string_view, char>::format(std::to_string(magic_enum::enum_integer<D>(e)), ctx);
}
};
#endif
#if defined(FMT_VERSION)
#include <fmt/format.h>
template <typename E>
struct fmt::formatter<E, std::enable_if_t<std::is_enum_v<std::decay_t<E>> && magic_enum::customize::enum_format_enabled<E>(), char>> : fmt::formatter<std::string_view> {
template <class FormatContext>
auto format(E e, FormatContext& ctx) const {
static_assert(std::is_same_v<char, string_view::value_type>, "formatter requires string_view::value_type type same as char.");
using D = std::decay_t<E>;
if constexpr (magic_enum::detail::supported<D>::value) {
if constexpr (magic_enum::detail::subtype_v<D> == magic_enum::detail::enum_subtype::flags) {
if (const auto name = magic_enum::enum_flags_name<D>(e); !name.empty()) {
return formatter<std::string_view, char>::format(std::string_view{name.data(), name.size()}, ctx);
}
} else {
if (const auto name = magic_enum::enum_name<D>(e); !name.empty()) {
return formatter<std::string_view, char>::format(std::string_view{name.data(), name.size()}, ctx);
}
}
}
return formatter<std::string_view, char>::format(std::to_string(magic_enum::enum_integer<D>(e)), ctx);
}
};
#endif
#if defined(MAGIC_ENUM_DEFAULT_ENABLE_ENUM_FORMAT_AUTO_DEFINE)
# undef MAGIC_ENUM_DEFAULT_ENABLE_ENUM_FORMAT
# undef MAGIC_ENUM_DEFAULT_ENABLE_ENUM_FORMAT_AUTO_DEFINE
#endif
#endif // NEARGYE_MAGIC_ENUM_FORMAT_HPP

View File

@@ -0,0 +1,89 @@
// __ __ _ ______ _____
// | \/ | (_) | ____| / ____|_ _
// | \ / | __ _ __ _ _ ___ | |__ _ __ _ _ _ __ ___ | | _| |_ _| |_
// | |\/| |/ _` |/ _` | |/ __| | __| | '_ \| | | | '_ ` _ \ | | |_ _|_ _|
// | | | | (_| | (_| | | (__ | |____| | | | |_| | | | | | | | |____|_| |_|
// |_| |_|\__,_|\__, |_|\___| |______|_| |_|\__,_|_| |_| |_| \_____|
// __/ | https://github.com/Neargye/magic_enum
// |___/ version 0.9.7
//
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
// SPDX-License-Identifier: MIT
// Copyright (c) 2019 - 2024 Daniil Goncharov <neargye@gmail.com>.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef NEARGYE_MAGIC_ENUM_FUSE_HPP
#define NEARGYE_MAGIC_ENUM_FUSE_HPP
#include "magic_enum.hpp"
namespace magic_enum {
namespace detail {
template <typename E>
constexpr optional<std::uintmax_t> fuse_one_enum(optional<std::uintmax_t> hash, E value) noexcept {
if (hash) {
if (const auto index = enum_index(value)) {
return (*hash << log2((enum_count<E>() << 1) - 1)) | *index;
}
}
return {};
}
template <typename E>
constexpr optional<std::uintmax_t> fuse_enum(E value) noexcept {
return fuse_one_enum(0, value);
}
template <typename E, typename... Es>
constexpr optional<std::uintmax_t> fuse_enum(E head, Es... tail) noexcept {
return fuse_one_enum(fuse_enum(tail...), head);
}
template <typename... Es>
constexpr auto typesafe_fuse_enum(Es... values) noexcept {
enum class enum_fuse_t : std::uintmax_t;
const auto fuse = fuse_enum(values...);
if (fuse) {
return optional<enum_fuse_t>{static_cast<enum_fuse_t>(*fuse)};
}
return optional<enum_fuse_t>{};
}
} // namespace magic_enum::detail
// Returns a bijective mix of several enum values. This can be used to emulate 2D switch/case statements.
template <typename... Es>
[[nodiscard]] constexpr auto enum_fuse(Es... values) noexcept {
static_assert((std::is_enum_v<std::decay_t<Es>> && ...), "magic_enum::enum_fuse requires enum type.");
static_assert(sizeof...(Es) >= 2, "magic_enum::enum_fuse requires at least 2 values.");
static_assert((detail::log2(enum_count<std::decay_t<Es>>() + 1) + ...) <= (sizeof(std::uintmax_t) * 8), "magic_enum::enum_fuse does not work for large enums");
#if defined(MAGIC_ENUM_NO_TYPESAFE_ENUM_FUSE)
const auto fuse = detail::fuse_enum<std::decay_t<Es>...>(values...);
#else
const auto fuse = detail::typesafe_fuse_enum<std::decay_t<Es>...>(values...);
#endif
return MAGIC_ENUM_ASSERT(fuse), fuse;
}
} // namespace magic_enum
#endif // NEARGYE_MAGIC_ENUM_FUSE_HPP

View File

@@ -0,0 +1,117 @@
// __ __ _ ______ _____
// | \/ | (_) | ____| / ____|_ _
// | \ / | __ _ __ _ _ ___ | |__ _ __ _ _ _ __ ___ | | _| |_ _| |_
// | |\/| |/ _` |/ _` | |/ __| | __| | '_ \| | | | '_ ` _ \ | | |_ _|_ _|
// | | | | (_| | (_| | | (__ | |____| | | | |_| | | | | | | | |____|_| |_|
// |_| |_|\__,_|\__, |_|\___| |______|_| |_|\__,_|_| |_| |_| \_____|
// __/ | https://github.com/Neargye/magic_enum
// |___/ version 0.9.7
//
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
// SPDX-License-Identifier: MIT
// Copyright (c) 2019 - 2024 Daniil Goncharov <neargye@gmail.com>.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef NEARGYE_MAGIC_ENUM_IOSTREAM_HPP
#define NEARGYE_MAGIC_ENUM_IOSTREAM_HPP
#include "magic_enum.hpp"
#include "magic_enum_flags.hpp"
#ifndef MAGIC_ENUM_USE_STD_MODULE
#include <iosfwd>
#endif
namespace magic_enum {
namespace ostream_operators {
template <typename Char, typename Traits, typename E, detail::enable_if_t<E, int> = 0>
std::basic_ostream<Char, Traits>& operator<<(std::basic_ostream<Char, Traits>& os, E value) {
using D = std::decay_t<E>;
using U = underlying_type_t<D>;
if constexpr (detail::supported<D>::value) {
if constexpr (detail::subtype_v<D> == detail::enum_subtype::flags) {
if (const auto name = enum_flags_name<D>(value); !name.empty()) {
for (const auto c : name) {
os.put(c);
}
return os;
}
} else {
if (const auto name = enum_name<D>(value); !name.empty()) {
for (const auto c : name) {
os.put(c);
}
return os;
}
}
}
return (os << static_cast<U>(value));
}
template <typename Char, typename Traits, typename E, detail::enable_if_t<E, int> = 0>
std::basic_ostream<Char, Traits>& operator<<(std::basic_ostream<Char, Traits>& os, optional<E> value) {
return value ? (os << *value) : os;
}
} // namespace magic_enum::ostream_operators
namespace istream_operators {
template <typename Char, typename Traits, typename E, detail::enable_if_t<E, int> = 0>
std::basic_istream<Char, Traits>& operator>>(std::basic_istream<Char, Traits>& is, E& value) {
using D = std::decay_t<E>;
std::basic_string<Char, Traits> s;
is >> s;
if constexpr (detail::supported<D>::value) {
if constexpr (detail::subtype_v<D> == detail::enum_subtype::flags) {
if (const auto v = enum_flags_cast<D>(s)) {
value = *v;
} else {
is.setstate(std::basic_ios<Char>::failbit);
}
} else {
if (const auto v = enum_cast<D>(s)) {
value = *v;
} else {
is.setstate(std::basic_ios<Char>::failbit);
}
}
} else {
is.setstate(std::basic_ios<Char>::failbit);
}
return is;
}
} // namespace magic_enum::istream_operators
namespace iostream_operators {
using magic_enum::ostream_operators::operator<<;
using magic_enum::istream_operators::operator>>;
} // namespace magic_enum::iostream_operators
} // namespace magic_enum
#endif // NEARGYE_MAGIC_ENUM_IOSTREAM_HPP

View File

@@ -0,0 +1,195 @@
// __ __ _ ______ _____
// | \/ | (_) | ____| / ____|_ _
// | \ / | __ _ __ _ _ ___ | |__ _ __ _ _ _ __ ___ | | _| |_ _| |_
// | |\/| |/ _` |/ _` | |/ __| | __| | '_ \| | | | '_ ` _ \ | | |_ _|_ _|
// | | | | (_| | (_| | | (__ | |____| | | | |_| | | | | | | | |____|_| |_|
// |_| |_|\__,_|\__, |_|\___| |______|_| |_|\__,_|_| |_| |_| \_____|
// __/ | https://github.com/Neargye/magic_enum
// |___/ version 0.9.7
//
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
// SPDX-License-Identifier: MIT
// Copyright (c) 2019 - 2024 Daniil Goncharov <neargye@gmail.com>.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef NEARGYE_MAGIC_ENUM_SWITCH_HPP
#define NEARGYE_MAGIC_ENUM_SWITCH_HPP
#include "magic_enum.hpp"
namespace magic_enum {
namespace detail {
struct default_result_type {};
template <typename T>
struct identity {
using type = T;
};
struct nonesuch {};
template <typename F, typename V, bool = std::is_invocable_v<F, V>>
struct invoke_result : identity<nonesuch> {};
template <typename F, typename V>
struct invoke_result<F, V, true> : std::invoke_result<F, V> {};
template <typename F, typename V>
using invoke_result_t = typename invoke_result<F, V>::type;
template <typename E, enum_subtype S, typename F, std::size_t... I>
constexpr auto common_invocable(std::index_sequence<I...>) noexcept {
static_assert(std::is_enum_v<E>, "magic_enum::detail::invocable_index requires enum type.");
if constexpr (count_v<E, S> == 0) {
return identity<nonesuch>{};
} else {
return std::common_type<invoke_result_t<F, enum_constant<values_v<E, S>[I]>>...>{};
}
}
template <typename E, enum_subtype S, typename Result, typename F>
constexpr auto result_type() noexcept {
static_assert(std::is_enum_v<E>, "magic_enum::detail::result_type requires enum type.");
constexpr auto seq = std::make_index_sequence<count_v<E, S>>{};
using R = typename decltype(common_invocable<E, S, F>(seq))::type;
if constexpr (std::is_same_v<Result, default_result_type>) {
if constexpr (std::is_same_v<R, nonesuch>) {
return identity<void>{};
} else {
return identity<R>{};
}
} else {
if constexpr (std::is_convertible_v<R, Result>) {
return identity<Result>{};
} else if constexpr (std::is_convertible_v<Result, R>) {
return identity<R>{};
} else {
return identity<nonesuch>{};
}
}
}
template <typename E, enum_subtype S, typename Result, typename F, typename D = std::decay_t<E>, typename R = typename decltype(result_type<D, S, Result, F>())::type>
using result_t = std::enable_if_t<std::is_enum_v<D> && !std::is_same_v<R, nonesuch>, R>;
#if !defined(MAGIC_ENUM_ENABLE_HASH) && !defined(MAGIC_ENUM_ENABLE_HASH_SWITCH)
template <typename T = void>
inline constexpr auto default_result_type_lambda = []() noexcept(std::is_nothrow_default_constructible_v<T>) { return T{}; };
template <>
inline constexpr auto default_result_type_lambda<void> = []() noexcept {};
template <std::size_t I, std::size_t End, typename R, typename E, enum_subtype S, typename F, typename Def>
constexpr decltype(auto) constexpr_switch_impl(F&& f, E value, Def&& def) {
if constexpr(I < End) {
constexpr auto v = enum_constant<enum_value<E, I, S>()>{};
if (value == v) {
if constexpr (std::is_invocable_r_v<R, F, decltype(v)>) {
return static_cast<R>(std::forward<F>(f)(v));
} else {
return def();
}
} else {
return constexpr_switch_impl<I + 1, End, R, E, S>(std::forward<F>(f), value, std::forward<Def>(def));
}
} else {
return def();
}
}
template <typename R, typename E, enum_subtype S, typename F, typename Def>
constexpr decltype(auto) constexpr_switch(F&& f, E value, Def&& def) {
static_assert(is_enum_v<E>, "magic_enum::detail::constexpr_switch requires enum type.");
if constexpr (count_v<E, S> == 0) {
return def();
} else {
return constexpr_switch_impl<0, count_v<E, S>, R, E, S>(std::forward<F>(f), value, std::forward<Def>(def));
}
}
#endif
} // namespace magic_enum::detail
template <typename Result = detail::default_result_type, typename E, detail::enum_subtype S = detail::subtype_v<E>, typename F, typename R = detail::result_t<E, S, Result, F>>
constexpr decltype(auto) enum_switch(F&& f, E value) {
using D = std::decay_t<E>;
static_assert(std::is_enum_v<D>, "magic_enum::enum_switch requires enum type.");
static_assert(detail::is_reflected_v<D, S>, "magic_enum requires enum implementation and valid max and min.");
#if defined(MAGIC_ENUM_ENABLE_HASH) || defined(MAGIC_ENUM_ENABLE_HASH_SWITCH)
return detail::constexpr_switch<&detail::values_v<D, S>, detail::case_call_t::value>(
std::forward<F>(f),
value,
detail::default_result_type_lambda<R>);
#else
return detail::constexpr_switch<R, D, S>(
std::forward<F>(f),
value,
detail::default_result_type_lambda<R>);
#endif
}
template <typename Result = detail::default_result_type, detail::enum_subtype S, typename E, typename F, typename R = detail::result_t<E, S, Result, F>>
constexpr decltype(auto) enum_switch(F&& f, E value) {
return enum_switch<Result, E, S>(std::forward<F>(f), value);
}
template <typename Result, typename E, detail::enum_subtype S = detail::subtype_v<E>, typename F, typename R = detail::result_t<E, S, Result, F>>
constexpr decltype(auto) enum_switch(F&& f, E value, Result&& result) {
using D = std::decay_t<E>;
static_assert(std::is_enum_v<D>, "magic_enum::enum_switch requires enum type.");
static_assert(detail::is_reflected_v<D, S>, "magic_enum requires enum implementation and valid max and min.");
#if defined(MAGIC_ENUM_ENABLE_HASH) || defined(MAGIC_ENUM_ENABLE_HASH_SWITCH)
return detail::constexpr_switch<&detail::values_v<D, S>, detail::case_call_t::value>(
std::forward<F>(f),
value,
[&result]() -> R { return std::forward<Result>(result); });
#else
return detail::constexpr_switch<R, D, S>(
std::forward<F>(f),
value,
[&result]() -> R { return std::forward<Result>(result); });
#endif
}
template <typename Result, detail::enum_subtype S, typename E, typename F, typename R = detail::result_t<E, S, Result, F>>
constexpr decltype(auto) enum_switch(F&& f, E value, Result&& result) {
return enum_switch<Result, E, S>(std::forward<F>(f), value, std::forward<Result>(result));
}
} // namespace magic_enum
template <>
struct std::common_type<magic_enum::detail::nonesuch, magic_enum::detail::nonesuch> : magic_enum::detail::identity<magic_enum::detail::nonesuch> {};
template <typename T>
struct std::common_type<T, magic_enum::detail::nonesuch> : magic_enum::detail::identity<T> {};
template <typename T>
struct std::common_type<magic_enum::detail::nonesuch, T> : magic_enum::detail::identity<T> {};
#endif // NEARGYE_MAGIC_ENUM_SWITCH_HPP

View File

@@ -0,0 +1,138 @@
// __ __ _ ______ _____
// | \/ | (_) | ____| / ____|_ _
// | \ / | __ _ __ _ _ ___ | |__ _ __ _ _ _ __ ___ | | _| |_ _| |_
// | |\/| |/ _` |/ _` | |/ __| | __| | '_ \| | | | '_ ` _ \ | | |_ _|_ _|
// | | | | (_| | (_| | | (__ | |____| | | | |_| | | | | | | | |____|_| |_|
// |_| |_|\__,_|\__, |_|\___| |______|_| |_|\__,_|_| |_| |_| \_____|
// __/ | https://github.com/Neargye/magic_enum
// |___/ version 0.9.7
//
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
// SPDX-License-Identifier: MIT
// Copyright (c) 2019 - 2024 Daniil Goncharov <neargye@gmail.com>.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#ifndef NEARGYE_MAGIC_ENUM_UTILITY_HPP
#define NEARGYE_MAGIC_ENUM_UTILITY_HPP
#include "magic_enum.hpp"
namespace magic_enum {
namespace detail {
template <typename E, enum_subtype S, typename F, std::size_t... I>
constexpr auto for_each(F&& f, std::index_sequence<I...>) {
constexpr bool has_void_return = (std::is_void_v<std::invoke_result_t<F, enum_constant<values_v<E, S>[I]>>> || ...);
constexpr bool all_same_return = (std::is_same_v<std::invoke_result_t<F, enum_constant<values_v<E, S>[0]>>, std::invoke_result_t<F, enum_constant<values_v<E, S>[I]>>> && ...);
if constexpr (has_void_return) {
(f(enum_constant<values_v<E, S>[I]>{}), ...);
} else if constexpr (all_same_return) {
return std::array{f(enum_constant<values_v<E, S>[I]>{})...};
} else {
return std::tuple{f(enum_constant<values_v<E, S>[I]>{})...};
}
}
template <typename E, enum_subtype S, typename F,std::size_t... I>
constexpr bool all_invocable(std::index_sequence<I...>) {
if constexpr (count_v<E, S> == 0) {
return false;
} else {
return (std::is_invocable_v<F, enum_constant<values_v<E, S>[I]>> && ...);
}
}
} // namespace magic_enum::detail
template <typename E, detail::enum_subtype S = detail::subtype_v<E>, typename F, detail::enable_if_t<E, int> = 0>
constexpr auto enum_for_each(F&& f) {
using D = std::decay_t<E>;
static_assert(std::is_enum_v<D>, "magic_enum::enum_for_each requires enum type.");
static_assert(detail::is_reflected_v<D, S>, "magic_enum requires enum implementation and valid max and min.");
constexpr auto sep = std::make_index_sequence<detail::count_v<D, S>>{};
if constexpr (detail::all_invocable<D, S, F>(sep)) {
return detail::for_each<D, S>(std::forward<F>(f), sep);
} else {
static_assert(detail::always_false_v<D>, "magic_enum::enum_for_each requires invocable of all enum value.");
}
}
template <typename E, detail::enum_subtype S = detail::subtype_v<E>>
[[nodiscard]] constexpr auto enum_next_value(E value, std::ptrdiff_t n = 1) noexcept -> detail::enable_if_t<E, optional<std::decay_t<E>>> {
using D = std::decay_t<E>;
constexpr std::ptrdiff_t count = detail::count_v<D, S>;
if (const auto i = enum_index<D, S>(value)) {
const std::ptrdiff_t index = (static_cast<std::ptrdiff_t>(*i) + n);
if (index >= 0 && index < count) {
return enum_value<D, S>(static_cast<std::size_t>(index));
}
}
return {};
}
template <typename E, detail::enum_subtype S = detail::subtype_v<E>>
[[nodiscard]] constexpr auto enum_next_value_circular(E value, std::ptrdiff_t n = 1) noexcept -> detail::enable_if_t<E, std::decay_t<E>> {
using D = std::decay_t<E>;
constexpr std::ptrdiff_t count = detail::count_v<D, S>;
if (const auto i = enum_index<D, S>(value)) {
const std::ptrdiff_t index = ((((static_cast<std::ptrdiff_t>(*i) + n) % count) + count) % count);
if (index >= 0 && index < count) {
return enum_value<D, S>(static_cast<std::size_t>(index));
}
}
return MAGIC_ENUM_ASSERT(false), value;
}
template <typename E, detail::enum_subtype S = detail::subtype_v<E>>
[[nodiscard]] constexpr auto enum_prev_value(E value, std::ptrdiff_t n = 1) noexcept -> detail::enable_if_t<E, optional<std::decay_t<E>>> {
using D = std::decay_t<E>;
constexpr std::ptrdiff_t count = detail::count_v<D, S>;
if (const auto i = enum_index<D, S>(value)) {
const std::ptrdiff_t index = (static_cast<std::ptrdiff_t>(*i) - n);
if (index >= 0 && index < count) {
return enum_value<D, S>(static_cast<std::size_t>(index));
}
}
return {};
}
template <typename E, detail::enum_subtype S = detail::subtype_v<E>>
[[nodiscard]] constexpr auto enum_prev_value_circular(E value, std::ptrdiff_t n = 1) noexcept -> detail::enable_if_t<E, std::decay_t<E>> {
using D = std::decay_t<E>;
constexpr std::ptrdiff_t count = detail::count_v<D, S>;
if (const auto i = enum_index<D, S>(value)) {
const std::ptrdiff_t index = ((((static_cast<std::ptrdiff_t>(*i) - n) % count) + count) % count);
if (index >= 0 && index < count) {
return enum_value<D, S>(static_cast<std::size_t>(index));
}
}
return MAGIC_ENUM_ASSERT(false), value;
}
} // namespace magic_enum
#endif // NEARGYE_MAGIC_ENUM_UTILITY_HPP

47
include/module.hpp Normal file
View File

@@ -0,0 +1,47 @@
#pragma once
#include <memory>
#include <fig_string.hpp>
#include <value.hpp>
#include <context.hpp>
namespace Fig
{
class Module
{
public:
const FString name;
const FString spec;
const FString path;
std::shared_ptr<Context> context; // module-level context
/*
import module -> automatically create a module context and call function `init` if exists
all global functions, variables, structs, etc will be stored in module context
then module context will be linked to the current context
*/
Module(const FString &moduleName, const FString &moduleSpec, const FString &modulePath) :
name(moduleName), spec(moduleSpec), path(modulePath)
{
context = std::make_shared<Context>(FString(std::format("<Module {}>", name.toBasicString())), nullptr);
}
bool hasSymbol(const FString &symbolName)
{
return context->contains(symbolName);
}
Value getSymbol(const FString &symbolName)
{
auto valOpt = context->get(symbolName);
if (!valOpt.has_value())
{
throw RuntimeError(FStringView(std::format("Symbol '{}' not found in module '{}'", symbolName.toBasicString(), name.toBasicString())));
}
return valOpt.value();
}
};
};

265
include/parser.hpp Normal file
View File

@@ -0,0 +1,265 @@
#pragma once
#include <ast.hpp>
#include <lexer.hpp>
#include <fig_string.hpp>
#include <error.hpp>
#include <print>
#include <unordered_map>
#include <stack>
namespace Fig
{
class Parser
{
private:
Lexer lexer;
std::vector<Ast::AstBase> output;
std::vector<Token> previousTokens;
size_t tokenPruduced = 0;
size_t currentTokenIndex = 0;
std::unique_ptr<AddressableError> error;
Ast::AstAddressInfo currentAAI;
std::stack<Ast::Expression> exprStack;
void pushNode(const Ast::AstBase &_node)
{
Ast::AstBase node = _node;
node->setAAI(currentAAI);
output.push_back(std::move(node));
}
void pushNode(const Ast::AstBase &_node, Ast::AstAddressInfo _aai)
{
Ast::AstBase node = _node;
node->setAAI(_aai);
output.push_back(node);
}
bool isTokenSymbol(Token tok)
{
return Lexer::symbol_map.contains(tok.getValue());
}
bool isTokenOp(Token tok)
{
return Ast::TokenToOp.contains(tok.getType());
}
bool isEOF()
{
if (tokenPruduced == 0) return false;
return currentToken() == EOFTok;
}
public:
using Precedence = uint32_t;
static const std::unordered_map<Ast::Operator, std::pair<Precedence, Precedence>> opPrecedence;
Parser(const Lexer &_lexer) :
lexer(_lexer)
{
}
AddressableError* getError() const
{
return error.get();
}
template <class _ErrT, typename = AddressableError>
void throwAddressableError(FStringView msg, size_t line, size_t column, std::source_location loc = std::source_location::current())
{
static_assert(std::is_base_of_v<AddressableError, _ErrT>,
"_ErrT must derive from AddressableError");
_ErrT spError(msg, line, column, loc);
error = std::make_unique<_ErrT>(spError);
throw spError;
}
template <class _ErrT, typename = AddressableError>
void throwAddressableError(FStringView msg, std::source_location loc = std::source_location::current())
{
static_assert(std::is_base_of_v<AddressableError, _ErrT>,
"_ErrT must derive from AddressableError");
// line, column provide by `currentAAI`
_ErrT spError(msg, currentAAI.line, currentAAI.column, loc);
error = std::make_unique<_ErrT>(spError);
throw spError;
}
template <class _ErrT, typename = UnaddressableError>
void throwUnaddressableError(FStringView msg, std::source_location loc = std::source_location::current())
{
static_assert(std::is_base_of_v<AddressableError, _ErrT>,
"_ErrT must derive from AddressableError");
_ErrT spError(msg, loc);
error = std::make_unique<_ErrT>(spError);
throw spError;
}
void setCurrentAAI(Ast::AstAddressInfo _aai)
{
currentAAI = std::move(_aai);
}
Ast::AstAddressInfo getCurrentAAI() const
{
return currentAAI;
}
inline Token nextToken()
{
// 没有Rollback时, 存在 currentTokenIndex = tokenPruduced - 1
next();
return currentToken();
}
inline void rollback()
{
if (int64_t(currentTokenIndex - 1) < int64_t(0))
// 同下 next注释
{
throw std::runtime_error("Internal Error in Parser::rollbackToken, trying to rollback but it's already on the begin");
}
currentTokenIndex--;
}
inline void next()
{
if (int64_t(currentTokenIndex) < (int64_t(tokenPruduced) - 1))
{
/*
必须两个都显示转换为int64_t.否则负数时会超出范围变成int64_t max, 并且 CTI也需要显示转换否则转换完的pruduced又会被转回去变为 int64_t max
*/
currentTokenIndex++;
setCurrentAAI(Ast::AstAddressInfo{.line = currentToken().line, .column = currentToken().column});
return;
}
if (isEOF()) return;
const Token &tok = lexer.nextToken();
tokenPruduced++;
if (tok == IllegalTok) throw lexer.getError();
currentTokenIndex = tokenPruduced - 1;
setCurrentAAI(Ast::AstAddressInfo{.line = tok.line, .column = tok.column});
previousTokens.push_back(tok);
}
inline Token currentToken()
{
if (tokenPruduced == 0) return nextToken();
return previousTokens.at(currentTokenIndex);
}
inline Token rollbackToken()
{
rollback();
return previousTokens.at(currentTokenIndex);
}
inline Token peekToken()
{
Token tok = nextToken();
rollback();
return tok;
}
std::pair<Precedence, Precedence> getBindingPower(Ast::Operator op)
{
return opPrecedence.at(op);
}
Precedence getLeftBindingPower(Ast::Operator op)
{
return getBindingPower(op).first;
}
Precedence getRightBindingPower(Ast::Operator op)
{
return getBindingPower(op).second;
}
template <class _Tp, class... Args>
std::shared_ptr<_Tp> makeAst(Args &&...args)
{
_Tp node(args...);
node.setAAI(currentAAI);
return std::shared_ptr<_Tp>(new _Tp(node));
}
void expectPeek(TokenType type)
{
if (peekToken().getType() != type)
{
throwAddressableError<SyntaxError>(FStringView(std::format("Expected `{}`, but got `{}`",
magic_enum::enum_name(type),
magic_enum::enum_name(peekToken().getType()))));
}
}
void expect(TokenType type)
{
if (currentToken().getType() != type)
{
throwAddressableError<SyntaxError>(FStringView(std::format("Expected `{}`, but got `{}`",
magic_enum::enum_name(type),
magic_enum::enum_name(currentToken().getType()))));
}
}
void expectPeek(TokenType type, FString expected)
{
if (peekToken().getType() != type)
{
throwAddressableError<SyntaxError>(FStringView(std::format("Expected `{}`, but got `{}`",
expected.toBasicString(),
magic_enum::enum_name(peekToken().getType()))));
}
}
void expect(TokenType type, FString expected)
{
if (currentToken().getType() != type)
{
throwAddressableError<SyntaxError>(FStringView(std::format("Expected `{}`, but got `{}`",
expected.toBasicString(),
magic_enum::enum_name(currentToken().getType()))));
}
}
bool isNext(TokenType type)
{
return peekToken().getType() == type;
}
bool isThis(TokenType type)
{
return currentToken().getType() == type;
}
static constexpr FString varDefTypeFollowed = u8"(Followed)";
Ast::VarDef __parseVarDef(bool); // entry: current is keyword `var` or `const` (isConst: Bool)
Value __parseValue();
Ast::ValueExpr __parseValueExpr();
Ast::FunctionCall __parseFunctionCall(FString);
Ast::FunctionParameters __parseFunctionParameters(); // entry: current is Token::LeftParen
Ast::Statement __parseStatement(); // entry: (idk)
Ast::BlockStatement __parseBlockStatement(); // entry: current is Token::LeftBrace
Ast::VarAssign __parseVarAssign(FString); // entry: current is Token::Assign, para1 is var name
Ast::If __parseIf(); // entry: current is Token::If
Ast::While __parseWhile(); // entry: current is Token::While
Ast::Return __parseReturn(); // entry: current is Token::Return
Ast::VarExpr __parseVarExpr(FString);
Ast::LambdaExpr __parseLambdaExpr();
Ast::FunctionDef __parseFunctionDef(bool); // entry: current is Token::Identifier (isPublic: Bool)
Ast::StructDef __parseStructDef(bool); // entry: current is Token::Identifier (struct name) arg(isPublic: bool)
Ast::BinaryExpr __parseInfix(Ast::Expression, Ast::Operator, Precedence);
Ast::UnaryExpr __parsePrefix(Ast::Operator, Precedence);
Ast::ListExpr __parseListExpr(); // entry: current is `[`
Ast::Expression __parseTupleOrParenExpr(); // entry: current is `(`
Ast::MapExpr __parseMapExpr(); // entry: current is `{`
Ast::InitExpr __parseInitExpr(FString); // entry: current is `{`, ahead is struct name. arg (struct name : FString)
Ast::Expression parseExpression(Precedence, TokenType = TokenType::Semicolon, TokenType = TokenType::Semicolon);
std::vector<Ast::AstBase> parseAll();
};
}; // namespace Fig

167
include/token.hpp Normal file
View File

@@ -0,0 +1,167 @@
#pragma once
#include <cstdint>
#include <format>
#include <magic_enum/magic_enum.hpp>
#include <fig_string.hpp>
namespace Fig
{
enum class TokenType : int8_t
{
Illegal = -1,
EndOfFile = 0,
Comments,
Identifier,
/* Keywords */
And, // and
Or, // or
Not, // not
Import, // import
Function, // fun
Variable, // var
Const, // const
Final, // final
While, // while
For, // for
If, // if
Else, // else
Struct, // struct
Interface, // interface
Implement, // implement
Public, // public
Return, // return
// TypeNull, // Null
// TypeInt, // Int
// TypeString, // String
// TypeBool, // Bool
// TypeDouble, // Double
/* Literal Types (not keyword)*/
LiteralNumber, // number (int,float...)
LiteralString, // FString
LiteralBool, // bool (true/false)
LiteralNull, // null (Null的唯一实例)
/* Punct */
Plus, // +
Minus, // -
Asterisk, // *
Slash, // /
Percent, // %
Caret, // ^
Ampersand, // &
Pipe, // |
Tilde, // ~
ShiftLeft, // <<
ShiftRight, // >>
// Exclamation, // !
Question, // ?
Assign, // =
Less, // <
Greater, // >
Dot, // .
Comma, // ,
Colon, // :
Semicolon, // ;
SingleQuote, // '
DoubleQuote, // "
// Backtick, // `
// At, // @
// Hash, // #
// Dollar, // $
// Backslash, // '\'
// Underscore, // _
LeftParen, // (
RightParen, // )
LeftBracket, // [
RightBracket, // ]
LeftBrace, // {
RightBrace, // }
// LeftArrow, // <-
RightArrow, // ->
// DoubleArrow, // =>
Equal, // ==
NotEqual, // !=
LessEqual, // <=
GreaterEqual, // >=
PlusEqual, // +=
MinusEqual, // -=
AsteriskEqual, // *=
SlashEqual, // /=
PercentEqual, // %=
CaretEqual, // ^=
DoublePlus, // ++
DoubleMinus, // --
DoubleAmpersand, // &&
DoublePipe, // ||
Walrus, // :=
Power, // **
};
class Token final
{
friend bool operator==(const Token &l, const Token &r);
private:
FString value;
TokenType type;
public:
size_t line, column;
inline Token() {};
inline Token(const FString &_value, TokenType _type) :
value(_value), type(_type) {}
inline Token(const FString &_value, TokenType _type, size_t _line, size_t _column) :
value(_value), type(_type)
{
line = _line;
column = _column;
}
Token setPos(size_t _line, size_t _column)
{
line = _line;
column = _column;
return *this;
}
FString getValue()
{
return value;
}
inline FString toString() const
{
return FString(std::format(
"Token('{}',{})",
this->value.toBasicString(),
magic_enum::enum_name(type)));
}
bool isIdentifier()
{
return type == TokenType::Identifier;
}
bool isLiteral()
{
return type == TokenType::LiteralNull || type == TokenType::LiteralBool || type == TokenType::LiteralNumber || type == TokenType::LiteralString;
}
TokenType getType()
{
return type;
}
};
inline bool operator==(const Token &l, const Token &r)
{
return l.type == r.type and l.value == r.value;
}
static Token IllegalTok(u8"ILLEGAL", TokenType::Illegal);
static Token EOFTok(u8"EOF", TokenType::EndOfFile);
} // namespace Fig

260
include/utf8_iterator.hpp Normal file
View File

@@ -0,0 +1,260 @@
#include <corecrt.h>
#include <string>
#include <iterator>
#include <string>
#include <cwctype>
// fuckyou C++
// i don't know how to deal with unicode string in cpp
// fuck
// generate by Qwen3-Coder:
namespace Fig
{
class UTF8Char
{
private:
std::u8string char_data_;
public:
UTF8Char(const std::u8string &data) :
char_data_(data) {}
// 获取UTF-8字符的字节长度
static size_t getUTF8CharLength(char8_t first_byte)
{
if ((first_byte & 0x80) == 0x00) return 1;
if ((first_byte & 0xE0) == 0xC0) return 2;
if ((first_byte & 0xF0) == 0xE0) return 3;
if ((first_byte & 0xF8) == 0xF0) return 4;
return 1;
}
// 转换为Unicode码点
char32_t toCodePoint() const
{
if (char_data_.empty()) return 0;
size_t len = getUTF8CharLength(char_data_[0]);
if (len > char_data_.length()) return 0;
char32_t code_point = 0;
switch (len)
{
case 1:
code_point = char_data_[0];
break;
case 2:
code_point = ((char_data_[0] & 0x1F) << 6) | (char_data_[1] & 0x3F);
break;
case 3:
code_point = ((char_data_[0] & 0x0F) << 12) | ((char_data_[1] & 0x3F) << 6) | (char_data_[2] & 0x3F);
break;
case 4:
code_point = ((char_data_[0] & 0x07) << 18) | ((char_data_[1] & 0x3F) << 12) | ((char_data_[2] & 0x3F) << 6) | (char_data_[3] & 0x3F);
break;
}
return code_point;
}
inline bool operator==(char32_t ch)
{
return this->toCodePoint() == ch;
}
// 字符分类函数
bool isAlpha() const
{
char32_t cp = toCodePoint();
return std::iswalpha(static_cast<wint_t>(cp));
}
bool isDigit() const
{
char32_t cp = toCodePoint();
return std::iswdigit(static_cast<wint_t>(cp));
}
bool isAlnum() const
{
char32_t cp = toCodePoint();
return std::iswalnum(static_cast<wint_t>(cp));
}
bool isSpace() const
{
char32_t cp = toCodePoint();
return std::iswspace(static_cast<wint_t>(cp));
}
bool isUpper() const
{
char32_t cp = toCodePoint();
return std::iswupper(static_cast<wint_t>(cp));
}
bool isLower() const
{
char32_t cp = toCodePoint();
return std::iswlower(static_cast<wint_t>(cp));
}
bool isPunct() const
{
char32_t cp = toCodePoint();
return std::iswpunct(static_cast<wint_t>(cp));
}
// 获取底层数据
const std::u8string &getString() const { return char_data_; }
// 获取字符长度(字节数)
size_t length() const { return char_data_.length(); }
// 是否为空
bool empty() const { return char_data_.empty(); }
};
class UTF8Iterator
{
private:
const std::u8string *str_;
size_t pos_;
// 获取UTF-8字符的字节长度
static size_t getUTF8CharLength(char8_t first_byte)
{
if ((first_byte & 0x80) == 0x00) return 1;
if ((first_byte & 0xE0) == 0xC0) return 2;
if ((first_byte & 0xF0) == 0xE0) return 3;
if ((first_byte & 0xF8) == 0xF0) return 4;
return 1;
}
// 获取下一个字符的起始位置
size_t getNextCharPos(size_t current_pos) const
{
if (current_pos >= str_->length()) return current_pos;
size_t char_len = getUTF8CharLength((*str_)[current_pos]);
return current_pos + char_len;
}
// 获取前一个字符的起始位置
size_t getPrevCharPos(size_t current_pos) const
{
if (current_pos == 0) return 0;
size_t pos = current_pos - 1;
while (pos > 0 && (str_->at(pos) & 0xC0) == 0x80)
{
--pos;
}
return pos;
}
public:
using iterator_category = std::bidirectional_iterator_tag;
using value_type = UTF8Char;
using difference_type = std::ptrdiff_t;
using pointer = const UTF8Char *;
using reference = const UTF8Char &;
// 构造函数
UTF8Iterator(const std::u8string &str, size_t pos = 0) :
str_(&str), pos_(pos)
{
if (pos_ > str_->length()) pos_ = str_->length();
}
// 前置递增
UTF8Iterator &operator++()
{
pos_ = getNextCharPos(pos_);
return *this;
}
// 后置递增
UTF8Iterator operator++(int)
{
UTF8Iterator temp = *this;
pos_ = getNextCharPos(pos_);
return temp;
}
// 前置递减
UTF8Iterator &operator--()
{
pos_ = getPrevCharPos(pos_);
return *this;
}
// 后置递减
UTF8Iterator operator--(int)
{
UTF8Iterator temp = *this;
pos_ = getPrevCharPos(pos_);
return temp;
}
// 解引用操作符 - 返回当前字符
UTF8Char operator*() const
{
if (pos_ >= str_->length())
{
return UTF8Char(std::u8string());
}
size_t char_len = getUTF8CharLength((*str_)[pos_]);
size_t end_pos = pos_ + char_len;
if (end_pos > str_->length())
{
end_pos = str_->length();
}
return UTF8Char(str_->substr(pos_, end_pos - pos_));
}
UTF8Char peek() const
{
if (pos_ >= str_->length())
{
return UTF8Char(std::u8string());
}
size_t next_pos = getNextCharPos(pos_);
if (next_pos >= str_->length())
{
return UTF8Char(std::u8string());
}
size_t char_len = getUTF8CharLength((*str_)[next_pos]);
size_t end_pos = next_pos + char_len;
if (end_pos > str_->length())
{
end_pos = str_->length();
}
return UTF8Char(str_->substr(next_pos, end_pos - next_pos));
}
// 窥探前一个字符
UTF8Char peekPrev() const
{
if (pos_ == 0)
{
return UTF8Char(std::u8string());
}
size_t prev_pos = getPrevCharPos(pos_);
size_t char_len = getUTF8CharLength((*str_)[prev_pos]);
size_t end_pos = prev_pos + char_len;
if (end_pos > str_->length())
{
end_pos = str_->length();
}
return UTF8Char(str_->substr(prev_pos, end_pos - prev_pos));
}
// 获取当前位置
size_t position() const { return pos_; }
size_t column() const { return pos_ + 1; }
// 检查是否到达末尾
bool isEnd() const { return pos_ >= str_->length(); }
};
} // namespace Fig

109
include/utils.hpp Normal file
View File

@@ -0,0 +1,109 @@
#pragma once
#pragma once
#include <fig_string.hpp>
#include <string>
#include <locale>
#include <cwctype>
#include <vector>
#include <algorithm>
namespace Fig::Utils
{
inline std::u32string utf8ToUtf32(const FString &s)
{
std::u32string result;
size_t i = 0;
while (i < s.size())
{
char32_t codepoint = 0;
unsigned char c = static_cast<unsigned char>(s[i]);
if (c < 0x80)
{
codepoint = c;
i += 1;
}
else if ((c >> 5) == 0x6)
{
codepoint = ((c & 0x1F) << 6) | (static_cast<unsigned char>(s[i + 1]) & 0x3F);
i += 2;
}
else if ((c >> 4) == 0xE)
{
codepoint = ((c & 0x0F) << 12) | ((static_cast<unsigned char>(s[i + 1]) & 0x3F) << 6) | (static_cast<unsigned char>(s[i + 2]) & 0x3F);
i += 3;
}
else if ((c >> 3) == 0x1E)
{
codepoint = ((c & 0x07) << 18) | ((static_cast<unsigned char>(s[i + 1]) & 0x3F) << 12) | ((static_cast<unsigned char>(s[i + 2]) & 0x3F) << 6) | (static_cast<unsigned char>(s[i + 3]) & 0x3F);
i += 4;
}
else
{
i += 1; // 跳过非法字节
continue;
}
result.push_back(codepoint);
}
return result;
}
inline FString utf32ToUtf8(const std::u32string &s)
{
FString result;
for (char32_t cp : s)
{
if (cp < 0x80)
{
result.push_back(static_cast<char8_t>(cp));
}
else if (cp < 0x800)
{
result.push_back(static_cast<char8_t>((cp >> 6) | 0xC0));
result.push_back(static_cast<char8_t>((cp & 0x3F) | 0x80));
}
else if (cp < 0x10000)
{
result.push_back(static_cast<char8_t>((cp >> 12) | 0xE0));
result.push_back(static_cast<char8_t>(((cp >> 6) & 0x3F) | 0x80));
result.push_back(static_cast<char8_t>((cp & 0x3F) | 0x80));
}
else
{
result.push_back(static_cast<char8_t>((cp >> 18) | 0xF0));
result.push_back(static_cast<char8_t>(((cp >> 12) & 0x3F) | 0x80));
result.push_back(static_cast<char8_t>(((cp >> 6) & 0x3F) | 0x80));
result.push_back(static_cast<char8_t>((cp & 0x3F) | 0x80));
}
}
return result;
}
inline FString toLower(const FString &s)
{
std::u32string u32 = utf8ToUtf32(s);
std::locale loc("");
for (auto &ch : u32)
{
ch = std::towlower(ch);
}
return utf32ToUtf8(u32);
}
inline FString toUpper(const FString &s)
{
std::u32string u32 = utf8ToUtf32(s);
std::locale loc("");
for (auto &ch : u32)
{
ch = std::towupper(ch);
}
return utf32ToUtf8(u32);
}
template <class T>
bool vectorContains(const T &t, const std::vector<T> v)
{
return std::find(v.begin(), v.end(), t) != v.end();
}
} // namespace Fig::Utils

373
include/value.hpp Normal file
View File

@@ -0,0 +1,373 @@
#pragma once
#include <Value/BaseValue.hpp>
#include <Value/valueError.hpp>
#include <Value/function.hpp>
#include <Value/structType.hpp>
#include <Value/structInstance.hpp>
#include <Value/Type.hpp>
#include <variant>
#include <cmath>
#include <string>
#include <format>
namespace Fig
{
class Value
{
public:
using VariantType = std::variant<Null, Int, Double, String, Bool, Function, StructType, StructInstance>;
VariantType data;
Value() :
data(Null{}) {}
Value(const Null &n) :
data(std::in_place_type<Null>, n) {}
Value(const Int &i) :
data(std::in_place_type<Int>, i) {}
Value(const Double &d) :
data(std::in_place_type<Double>, d)
{
ValueType::IntClass casted = static_cast<ValueType::IntClass>(d.getValue());
if (casted == d.getValue())
{
data.emplace<Int>(casted);
}
}
Value(const String &s) :
data(std::in_place_type<String>, s) {}
Value(const Bool &b) :
data(std::in_place_type<Bool>, b) {}
Value(const Function &f) :
data(std::in_place_type<Function>, f) {}
Value(const StructType &s) :
data(std::in_place_type<StructType>, s) {}
Value(const StructInstance &s) :
data(std::in_place_type<StructInstance>, s) {}
template <typename T,
typename = std::enable_if_t<
std::is_same_v<T, ValueType::IntClass>
|| std::is_same_v<T, ValueType::DoubleClass>
|| std::is_same_v<T, ValueType::StringClass>
|| std::is_same_v<T, ValueType::BoolClass>
|| std::is_same_v<T, ValueType::FunctionClass>
|| std::is_same_v<T, ValueType::StructTypeClass>>>
Value(const T &val)
{
// 不可以用 data = 的形式
// __ValueWrapper 构造、拷贝有限制
if constexpr (std::is_same_v<T, ValueType::IntClass>)
data.emplace<Int>(val);
else if constexpr (std::is_same_v<T, ValueType::DoubleClass>)
{
ValueType::IntClass casted = static_cast<ValueType::IntClass>(val);
if (casted == val)
{
data.emplace<Int>(casted);
}
else
{
data.emplace<Double>(val);
}
}
else if constexpr (std::is_same_v<T, ValueType::StringClass>)
data.emplace<String>(val);
else if constexpr (std::is_same_v<T, ValueType::BoolClass>)
data.emplace<Bool>(val);
else if constexpr (std::is_same_v<T, ValueType::FunctionClass>)
data.emplace<Function>(val);
else if constexpr (std::is_same_v<T, ValueType::StructTypeClass>)
data.emplace<StructType>(val);
else if constexpr (std::is_same_v<T, ValueType::StructInstanceClass>)
data.emplace<StructInstance>(val);
}
Value(const Value &) = default;
Value(Value &&) noexcept = default;
Value &operator=(const Value &) = default;
Value &operator=(Value &&) noexcept = default;
static Value defaultValue(TypeInfo ti)
{
if (ti == ValueType::Int)
return Value(Int(0));
else if (ti == ValueType::Double)
return Value(Double(0.0));
else if (ti == ValueType::String)
return Value(String(u8""));
else if (ti == ValueType::Bool)
return Value(Bool(false));
else if (ti == ValueType::Function)
return getNullInstance();
else if (ti == ValueType::StructType)
return getNullInstance();
else if (ti == ValueType::StructInstance)
return getNullInstance();
else
return getNullInstance();
}
template <typename T>
bool is() const
{
return std::holds_alternative<T>(data);
}
template <typename T>
T &as()
{
return std::get<T>(data);
}
template <typename T>
const T &as() const
{
return std::get<T>(data);
}
static Value getNullInstance()
{
static Value v(Null{});
return v;
}
TypeInfo getTypeInfo() const
{
return std::visit([](auto &&val) { return val.ti; }, data);
}
bool isNull() const { return is<Null>(); }
bool isNumeric() const { return is<Int>() || is<Double>(); }
ValueType::DoubleClass getNumericValue() const
{
if (is<Int>())
return static_cast<ValueType::DoubleClass>(as<Int>().getValue());
else if (is<Double>())
return as<Double>().getValue();
else
throw RuntimeError(u8"getNumericValue: Not a numeric value");
}
FString toString() const
{
if (is<Null>()) return FString(u8"null");
if (is<Int>()) return FString(std::to_string(as<Int>().getValue()));
if (is<Double>()) return FString(std::to_string(as<Double>().getValue()));
if (is<String>()) return as<String>().getValue();
if (is<Bool>()) return as<Bool>().getValue() ? FString(u8"true") : FString(u8"false");
if (is<Function>())
{
return FString(std::format("<Function {} at {:p}>",
as<Function>().getValue().id,
static_cast<const void *>(as<Function>().data.get())));
}
if (is<StructType>())
{
return FString(std::format("<StructType {} at {:p}>",
as<StructType>().getValue().id,
static_cast<const void *>(as<StructType>().data.get())));
}
if (is<StructInstance>())
{
return FString(std::format("<Struct Instance('{}') at {:p}",
as<StructInstance>().getValue().structName.toBasicString(),
static_cast<const void *>(as<StructInstance>().data.get())));
}
return FString(u8"<error>");
}
private:
static std::string makeTypeErrorMessage(const char *prefix, const char *op,
const Value &lhs, const Value &rhs)
{
auto lhs_type = std::visit([](auto &&v) { return v.ti.name.toBasicString(); }, lhs.data);
auto rhs_type = std::visit([](auto &&v) { return v.ti.name.toBasicString(); }, rhs.data);
return std::format("{}: {} '{}' {}", prefix, lhs_type, op, rhs_type);
}
public:
// math
friend Value operator+(const Value &lhs, const Value &rhs)
{
if (lhs.isNull() || rhs.isNull())
throw ValueError(FStringView(makeTypeErrorMessage("Cannot add", "+", lhs, rhs)));
if (lhs.isNumeric() and rhs.isNumeric())
return lhs.getNumericValue() + rhs.getNumericValue();
if (lhs.is<String>() && rhs.is<String>())
return Value(ValueType::StringClass(lhs.as<String>().getValue() + rhs.as<String>().getValue()));
throw ValueError(FStringView(makeTypeErrorMessage("Unsupported operation", "+", lhs, rhs)));
}
friend Value operator-(const Value &lhs, const Value &rhs)
{
if (lhs.isNull() || rhs.isNull())
throw ValueError(FStringView(makeTypeErrorMessage("Cannot subtract", "-", lhs, rhs)));
if (lhs.isNumeric() and rhs.isNumeric())
return lhs.getNumericValue() - rhs.getNumericValue();
throw ValueError(FStringView(makeTypeErrorMessage("Unsupported operation", "-", lhs, rhs)));
}
friend Value operator*(const Value &lhs, const Value &rhs)
{
if (lhs.isNull() || rhs.isNull())
throw ValueError(FStringView(makeTypeErrorMessage("Cannot multiply", "*", lhs, rhs)));
if (lhs.isNumeric() and rhs.isNumeric())
return lhs.getNumericValue() * rhs.getNumericValue();
throw ValueError(FStringView(makeTypeErrorMessage("Unsupported operation", "*", lhs, rhs)));
}
friend Value operator/(const Value &lhs, const Value &rhs)
{
if (lhs.isNull() || rhs.isNull())
throw ValueError(FStringView(makeTypeErrorMessage("Cannot divide", "/", lhs, rhs)));
if (lhs.isNumeric() and rhs.isNumeric())
{
auto rnv = rhs.getNumericValue();
if (rnv == 0) throw ValueError(FStringView(makeTypeErrorMessage("Division by zero", "/", lhs, rhs)));
return lhs.getNumericValue() / rnv;
}
throw ValueError(FStringView(makeTypeErrorMessage("Unsupported operation", "/", lhs, rhs)));
}
friend Value operator%(const Value &lhs, const Value &rhs)
{
if (lhs.isNull() || rhs.isNull())
throw ValueError(FStringView(makeTypeErrorMessage("Cannot modulo", "%", lhs, rhs)));
if (lhs.isNumeric() and rhs.isNumeric())
{
auto rnv = rhs.getNumericValue();
if (rnv == 0) throw ValueError(FStringView(makeTypeErrorMessage("Modulo by zero", "%", lhs, rhs)));
return fmod(lhs.getNumericValue(), rhs.getNumericValue());
}
throw ValueError(FStringView(makeTypeErrorMessage("Unsupported operation", "%", lhs, rhs)));
}
// logic
friend Value operator&&(const Value &lhs, const Value &rhs)
{
if (!lhs.is<Bool>() || !rhs.is<Bool>())
throw ValueError(FStringView(makeTypeErrorMessage("Logical AND requires bool", "&&", lhs, rhs)));
return Value(lhs.as<Bool>().getValue() && rhs.as<Bool>().getValue());
}
friend Value operator||(const Value &lhs, const Value &rhs)
{
if (!lhs.is<Bool>() || !rhs.is<Bool>())
throw ValueError(FStringView(makeTypeErrorMessage("Logical OR requires bool", "||", lhs, rhs)));
return Value(lhs.as<Bool>().getValue() || rhs.as<Bool>().getValue());
}
friend Value operator!(const Value &v)
{
if (!v.is<Bool>())
throw ValueError(FStringView(std::format("Logical NOT requires bool: '{}'",
std::visit([](auto &&val) { return val.ti.name.toBasicString(); }, v.data))));
return Value(!v.as<Bool>().getValue());
}
friend Value operator-(const Value &v)
{
if (v.isNull())
throw ValueError(FStringView(std::format("Unary minus cannot be applied to null")));
if (v.is<Int>())
return Value(-v.as<Int>().getValue());
if (v.is<Double>())
return Value(-v.as<Double>().getValue());
throw ValueError(FStringView(std::format("Unary minus requires int or double: '{}'",
std::visit([](auto &&val) { return val.ti.name.toBasicString(); }, v.data))));
}
friend Value operator~(const Value &v)
{
if (!v.is<Int>())
throw ValueError(FStringView(std::format("Bitwise NOT requires int: '{}'",
std::visit([](auto &&val) { return val.ti.name.toBasicString(); }, v.data))));
return Value(~v.as<Int>().getValue());
}
// compare → now returns bool
friend bool operator==(const Value &lhs, const Value &rhs)
{
return lhs.data == rhs.data;
}
friend bool operator!=(const Value &lhs, const Value &rhs)
{
return !(lhs.data == rhs.data);
}
friend bool operator<(const Value &lhs, const Value &rhs)
{
if (lhs.isNumeric() and rhs.isNumeric())
return lhs.getNumericValue() < rhs.getNumericValue();
if (lhs.is<String>() && rhs.is<String>()) return lhs.as<String>().getValue() < rhs.as<String>().getValue();
throw ValueError(FStringView(makeTypeErrorMessage("Unsupported comparison", "<", lhs, rhs)));
}
friend bool operator<=(const Value &lhs, const Value &rhs)
{
return lhs == rhs or lhs < rhs;
}
friend bool operator>(const Value &lhs, const Value &rhs)
{
if (lhs.isNumeric() and rhs.isNumeric())
return lhs.getNumericValue() > rhs.getNumericValue();
if (lhs.is<String>() && rhs.is<String>()) return lhs.as<String>().getValue() > rhs.as<String>().getValue();
throw ValueError(FStringView(makeTypeErrorMessage("Unsupported comparison", ">", lhs, rhs)));
}
friend bool operator>=(const Value &lhs, const Value &rhs)
{
return lhs == rhs or lhs > rhs;
}
// bitwise
friend Value bit_and(const Value &lhs, const Value &rhs)
{
if (!lhs.is<Int>() || !rhs.is<Int>())
throw ValueError(FStringView(makeTypeErrorMessage("Bitwise AND requires int", "&", lhs, rhs)));
return Value(lhs.as<Int>().getValue() & rhs.as<Int>().getValue());
}
friend Value bit_or(const Value &lhs, const Value &rhs)
{
if (!lhs.is<Int>() || !rhs.is<Int>())
throw ValueError(FStringView(makeTypeErrorMessage("Bitwise OR requires int", "|", lhs, rhs)));
return Value(lhs.as<Int>().getValue() | rhs.as<Int>().getValue());
}
friend Value bit_xor(const Value &lhs, const Value &rhs)
{
if (!lhs.is<Int>() || !rhs.is<Int>())
throw ValueError(FStringView(makeTypeErrorMessage("Bitwise XOR requires int", "^", lhs, rhs)));
return Value(lhs.as<Int>().getValue() ^ rhs.as<Int>().getValue());
}
friend Value bit_not(const Value &v)
{
if (!v.is<Int>())
throw ValueError(FStringView(std::format("Bitwise NOT requires int: '{}'",
std::visit([](auto &&val) { return val.ti.name.toBasicString(); }, v.data))));
return Value(~v.as<Int>().getValue());
}
friend Value shift_left(const Value &lhs, const Value &rhs)
{
if (!lhs.is<Int>() || !rhs.is<Int>())
throw ValueError(FStringView(makeTypeErrorMessage("Shift left requires int", "<<", lhs, rhs)));
return Value(lhs.as<Int>().getValue() << rhs.as<Int>().getValue());
}
friend Value shift_right(const Value &lhs, const Value &rhs)
{
if (!lhs.is<Int>() || !rhs.is<Int>())
throw ValueError(FStringView(makeTypeErrorMessage("Shift right requires int", ">>", lhs, rhs)));
return Value(lhs.as<Int>().getValue() >> rhs.as<Int>().getValue());
}
};
using Any = Value;
} // namespace Fig

55
include/warning.hpp Normal file
View File

@@ -0,0 +1,55 @@
#pragma once
#include <fig_string.hpp>
#include <magic_enum/magic_enum.hpp>
#include <unordered_map>
namespace Fig
{
class Warning
{
private:
size_t id; // the id (standard) of warning
FString msg;
size_t line, column;
public:
static const std::unordered_map<size_t, FString> standardWarnings;
Warning(size_t _id, FString _msg)
{
id = _id;
msg = std::move(_msg);
}
Warning(size_t _id, FString _msg, size_t _line, size_t _column)
{
id = _id;
msg = std::move(_msg);
line = _line;
column = _column;
}
auto getIDName()
{
return standardWarnings.at(id);
}
auto getID()
{
return id;
}
auto getMsg()
{
return msg;
}
auto getLine()
{
return line;
}
auto getColumn()
{
return column;
}
};
};

488
src/evaluator.cpp Normal file
View File

@@ -0,0 +1,488 @@
#include <evaluator.hpp>
#include <builtins.hpp>
#include <utils.hpp>
namespace Fig
{
Value Evaluator::__evalOp(Ast::Operator op, const Value &lhs, const Value &rhs)
{
using Fig::Ast::Operator;
switch (op)
{
case Operator::Add: return lhs + rhs;
case Operator::Subtract: return lhs - rhs;
case Operator::Multiply: return lhs * rhs;
case Operator::Divide: return lhs / rhs;
case Operator::Modulo: return lhs % rhs;
case Operator::And: return lhs && rhs;
case Operator::Or: return lhs || rhs;
case Operator::Not: return !lhs;
case Operator::Equal: return Value(lhs == rhs);
case Operator::NotEqual: return Value(lhs != rhs);
case Operator::Less: return lhs < rhs;
case Operator::LessEqual: return lhs <= rhs;
case Operator::Greater: return lhs > rhs;
case Operator::GreaterEqual: return lhs >= rhs;
case Operator::BitAnd: return bit_and(lhs, rhs);
case Operator::BitOr: return bit_or(lhs, rhs);
case Operator::BitXor: return bit_xor(lhs, rhs);
case Operator::BitNot: return bit_not(lhs);
case Operator::ShiftLeft: return shift_left(lhs, rhs);
case Operator::ShiftRight: return shift_right(lhs, rhs);
case Operator::Walrus: {
static constexpr char WalrusErrorName[] = "WalrusError";
throw EvaluatorError<WalrusErrorName>(FStringView(u8"Walrus operator is not supported"), currentAddressInfo); // using parent address info for now
}
default:
throw RuntimeError(FStringView(u8"Unsupported operator"));
}
}
Value Evaluator::evalBinary(const Ast::BinaryExpr &binExp)
{
return __evalOp(binExp->op, eval(binExp->lexp), eval(binExp->rexp));
}
Value Evaluator::evalUnary(const Ast::UnaryExpr &unExp)
{
using Fig::Ast::Operator;
switch (unExp->op)
{
case Operator::Not:
return !eval(unExp->exp);
case Operator::Subtract:
return -eval(unExp->exp);
case Operator::BitNot:
return bit_not(eval(unExp->exp));
default:
throw RuntimeError(FStringView(std::format("Unsupported unary operator: {}", magic_enum::enum_name(unExp->op))));
}
}
Value Evaluator::eval(Ast::Expression exp)
{
using Fig::Ast::AstType;
switch (exp->getType())
{
case AstType::ValueExpr: {
auto valExp = std::dynamic_pointer_cast<Ast::ValueExprAst>(exp);
return valExp->val;
}
case AstType::VarExpr: {
auto varExp = std::dynamic_pointer_cast<Ast::VarExprAst>(exp);
auto val = currentContext->get(varExp->name);
if (val.has_value())
{
return val.value();
}
throw RuntimeError(FStringView(std::format("Variable '{}' not defined", varExp->name.toBasicString())));
}
case AstType::BinaryExpr: {
auto binExp = std::dynamic_pointer_cast<Ast::BinaryExprAst>(exp);
return evalBinary(binExp);
}
case AstType::UnaryExpr: {
auto unExp = std::dynamic_pointer_cast<Ast::UnaryExprAst>(exp);
return evalUnary(unExp);
}
case AstType::FunctionCall: {
// std::cerr << "Eval: function call...\n";
auto fnCall = std::dynamic_pointer_cast<Ast::FunctionCallExpr>(exp);
FString fnName = fnCall->name;
if (Builtins::isBuiltinFunction(fnName))
{
std::vector<Value> callArgs;
if (fnCall->arg.getLength() != Builtins::getBuiltinFunctionParamCount(fnName) and Builtins::getBuiltinFunctionParamCount(fnName) != -1) // -1 means variadic
{
static constexpr char BuiltinArgumentMismatchErrorName[] = "BuiltinArgumentMismatchError";
throw EvaluatorError<BuiltinArgumentMismatchErrorName>(FStringView(std::format("Builtin function '{}' expects {} arguments, but {} were provided", fnName.toBasicString(), Builtins::getBuiltinFunctionParamCount(fnName), callArgs.size())), currentAddressInfo);
}
for (const auto &argExp : fnCall->arg.argv)
{
callArgs.push_back(eval(argExp));
}
return Builtins::getBuiltinFunction(fnName)(callArgs);
}
auto fnValOpt = currentContext->get(fnName);
if (!fnValOpt.has_value())
{
static constexpr char FunctionNotFoundErrorName[] = "FunctionNotFoundError";
throw EvaluatorError<FunctionNotFoundErrorName>(FStringView(std::format("Function '{}' not defined", fnName.toBasicString())), currentAddressInfo);
}
Value fnVal = fnValOpt.value();
if (!fnVal.is<Function>())
{
static constexpr char NotAFunctionErrorName[] = "NotAFunctionError";
throw EvaluatorError<NotAFunctionErrorName>(FStringView(std::format("'{}' is not a function or callable", fnName.toBasicString())), currentAddressInfo);
}
FunctionStruct fnStruct = fnVal.as<Function>().getValue();
// check argument, all types of parameters
Ast::FunctionParameters fnParas = fnStruct.paras;
Ast::FunctionArguments fnArgs = fnCall->arg;
if (fnArgs.getLength() < fnParas.posParas.size() || fnArgs.getLength() > fnParas.size())
{
static constexpr char ArgumentMismatchErrorName[] = "ArgumentMismatchError";
throw EvaluatorError<ArgumentMismatchErrorName>(FStringView(std::format("Function '{}' expects {} to {} arguments, but {} were provided", fnName.toBasicString(), fnParas.posParas.size(), fnParas.size(), fnArgs.getLength())), currentAddressInfo);
}
Ast::FunctionCallArgs evaluatedArgs;
// positional parameters type check
size_t i;
for (i = 0; i < fnParas.posParas.size(); i++)
{
TypeInfo expectedType(fnParas.posParas[i].second); // look up type info, if exists a type with the name, use it, else throw
Value argVal = eval(fnArgs.argv[i]);
TypeInfo actualType = argVal.getTypeInfo();
if (expectedType != actualType and expectedType != ValueType::Any)
{
static constexpr char ArgumentTypeMismatchErrorName[] = "ArgumentTypeMismatchError";
throw EvaluatorError<ArgumentTypeMismatchErrorName>(FStringView(std::format("In function '{}', argument '{}' expects type '{}', but got type '{}'", fnName.toBasicString(), fnParas.posParas[i].first.toBasicString(), expectedType.toString().toBasicString(), actualType.toString().toBasicString())), currentAddressInfo);
}
evaluatedArgs.argv.push_back(argVal);
}
// default parameters type check
for (; i < fnArgs.getLength(); i++)
{
size_t defParamIndex = i - fnParas.posParas.size();
TypeInfo expectedType = fnParas.defParas[defParamIndex].second.first;
Value defaultVal = eval(fnParas.defParas[defParamIndex].second.second);
if (expectedType != defaultVal.getTypeInfo() and expectedType != ValueType::Any)
{
static constexpr char DefaultParameterTypeErrorName[] = "DefaultParameterTypeError";
throw EvaluatorError<DefaultParameterTypeErrorName>(FStringView(std::format("In function '{}', default parameter '{}' has type '{}', which does not match the expected type '{}'", fnName.toBasicString(), fnParas.defParas[defParamIndex].first.toBasicString(), defaultVal.getTypeInfo().toString().toBasicString(), expectedType.toString().toBasicString())), currentAddressInfo);
}
Value argVal = eval(fnArgs.argv[i]);
TypeInfo actualType = argVal.getTypeInfo();
if (expectedType != actualType and expectedType != ValueType::Any)
{
static constexpr char ArgumentTypeMismatchErrorName[] = "ArgumentTypeMismatchError";
throw EvaluatorError<ArgumentTypeMismatchErrorName>(FStringView(std::format("In function '{}', argument '{}' expects type '{}', but got type '{}'", fnName.toBasicString(), fnParas.defParas[defParamIndex].first.toBasicString(), expectedType.toString().toBasicString(), actualType.toString().toBasicString())), currentAddressInfo);
}
evaluatedArgs.argv.push_back(argVal);
}
// default parameters filling
for (; i < fnParas.size(); i++)
{
size_t defParamIndex = i - fnParas.posParas.size();
Value defaultVal = eval(fnParas.defParas[defParamIndex].second.second);
evaluatedArgs.argv.push_back(defaultVal);
}
// create new context for function call
auto newContext = std::make_shared<Context>(FString(std::format("<Function {}()>", fnName.toBasicString())), currentContext);
auto previousContext = currentContext;
currentContext = newContext;
// define parameters in new context
for (size_t j = 0; j < fnParas.size(); j++)
{
FString paramName;
TypeInfo paramType;
if (j < fnParas.posParas.size())
{
paramName = fnParas.posParas[j].first;
paramType = fnParas.posParas[j].second;
}
else
{
size_t defParamIndex = j - fnParas.posParas.size();
paramName = fnParas.defParas[defParamIndex].first;
paramType = fnParas.defParas[defParamIndex].second.first;
}
AccessModifier argAm = AccessModifier::Const;
currentContext->def(paramName, paramType, argAm, evaluatedArgs.argv[j]);
}
// execute function body
Value retVal = Value::getNullInstance();
for (const auto &stmt : fnStruct.body->stmts)
{
StatementResult sr = evalStatement(stmt);
if (sr.shouldReturn())
{
retVal = sr.result;
break;
}
}
currentContext = previousContext;
if (fnStruct.retType != retVal.getTypeInfo() and fnStruct.retType != ValueType::Any)
{
static constexpr char ReturnTypeMismatchErrorName[] = "ReturnTypeMismatchError";
throw EvaluatorError<ReturnTypeMismatchErrorName>(FStringView(std::format("Function '{}' expects return type '{}', but got type '{}'", fnName.toBasicString(), fnStruct.retType.toString().toBasicString(), retVal.getTypeInfo().toString().toBasicString())), currentAddressInfo);
}
return retVal;
}
case AstType::ListExpr: {
auto listexpr = std::dynamic_pointer_cast<Ast::ListExprAst>(exp);
}
default:
throw RuntimeError(FStringView("Unknown expression type:" + std::to_string(static_cast<int>(exp->getType()))));
return Value::getNullInstance();
}
}
StatementResult Evaluator::evalStatement(const Ast::Statement &stmt)
{
using Fig::Ast::AstType;
switch (stmt->getType())
{
case AstType::VarDefSt: {
auto varDef = std::dynamic_pointer_cast<Ast::VarDefAst>(stmt);
if (currentContext->contains(varDef->name))
{
static constexpr char RedeclarationErrorName[] = "RedeclarationError";
throw EvaluatorError<RedeclarationErrorName>(FStringView(std::format("Variable '{}' already defined in this scope", varDef->name.toBasicString())), currentAddressInfo);
}
Value val;
TypeInfo varTypeInfo;
if (varDef->typeName == Parser::varDefTypeFollowed)
{
// has expr
val = eval(varDef->expr);
varTypeInfo = val.getTypeInfo();
}
else if (varDef->expr)
{
val = eval(varDef->expr);
if (varDef->typeName != ValueType::Any.name)
{
TypeInfo expectedType(varDef->typeName);
TypeInfo actualType = val.getTypeInfo();
if (expectedType != actualType and expectedType != ValueType::Any)
{
static constexpr char VariableTypeMismatchErrorName[] = "VariableTypeMismatchError";
throw EvaluatorError<VariableTypeMismatchErrorName>(FStringView(std::format("Variable '{}' expects type '{}', but got type '{}'", varDef->name.toBasicString(), expectedType.toString().toBasicString(), actualType.toString().toBasicString())), currentAddressInfo);
}
}
}
else if (!varDef->typeName.empty())
{
varTypeInfo = TypeInfo(varDef->typeName); // may throw
val = Value::defaultValue(varTypeInfo);
}
AccessModifier am = (varDef->isPublic ? (varDef->isConst ? AccessModifier::PublicConst : AccessModifier::Public) : (varDef->isConst ? AccessModifier::Const : AccessModifier::Normal));
currentContext->def(varDef->name, varTypeInfo, am, val);
return StatementResult::normal();
}
case AstType::ExpressionStmt: {
auto exprSt = std::dynamic_pointer_cast<Ast::ExpressionStmtAst>(stmt);
eval(exprSt->exp);
return StatementResult::normal();
};
case AstType::BlockStatement: {
auto blockSt = std::dynamic_pointer_cast<Ast::BlockStatementAst>(stmt);
auto newContext = std::make_shared<Context>(FString(std::format("<Block {}:{}>", blockSt->getAAI().line, blockSt->getAAI().column)), currentContext);
auto previousContext = currentContext;
currentContext = newContext;
StatementResult lstResult = StatementResult::normal();
for (const auto &s : blockSt->stmts)
{
StatementResult sr = evalStatement(s);
if (!sr.isNormal())
{
lstResult = sr;
break;
}
}
currentContext = previousContext;
return lstResult;
};
case AstType::FunctionDefSt: {
auto fnDef = std::dynamic_pointer_cast<Ast::FunctionDefSt>(stmt);
if (currentContext->contains(fnDef->name))
{
static constexpr char RedeclarationErrorName[] = "RedeclarationError";
throw EvaluatorError<RedeclarationErrorName>(FStringView(std::format("Function '{}' already defined in this scope", fnDef->name.toBasicString())), currentAddressInfo);
}
AccessModifier am = (fnDef->isPublic ? AccessModifier::PublicConst : AccessModifier::Const);
currentContext->def(
fnDef->name,
ValueType::Function,
am,
Value(Function(
fnDef->paras,
TypeInfo(fnDef->retType),
fnDef->body)));
return StatementResult::normal();
};
case AstType::StructSt: {
auto stDef = std::dynamic_pointer_cast<Ast::StructDefSt>(stmt);
if (currentContext->contains(stDef->name))
{
static constexpr char RedeclarationErrorName[] = "RedeclarationError";
throw EvaluatorError<RedeclarationErrorName>(FStringView(std::format("Structure '{}' already defined in this scope", stDef->name.toBasicString())), currentAddressInfo);
}
std::vector<Field> fields;
std::vector<FString> _fieldNames;
for (Ast::StructDefField field : stDef->fields)
{
if (Utils::vectorContains(field.fieldName, _fieldNames))
{
static constexpr char RedeclarationErrorName[] = "RedeclarationError";
throw EvaluatorError<RedeclarationErrorName>(FStringView(std::format("Field '{}' already defined in structure '{}'", field.fieldName.toBasicString(), stDef->name.toBasicString())), currentAddressInfo);
}
fields.push_back(Field(field.am, field.fieldName, TypeInfo(field.tiName), field.defaultValueExpr));
}
ContextPtr defContext(currentContext);
AccessModifier am = (stDef->isPublic ? AccessModifier::PublicConst : AccessModifier::Const);
currentContext->def(
stDef->name,
ValueType::StructType,
am,
Value(StructType(
defContext,
fields)));
return StatementResult::normal();
}
case AstType::VarAssignSt: {
auto varAssign = std::dynamic_pointer_cast<Ast::VarAssignSt>(stmt);
if (!currentContext->contains(varAssign->varName))
{
static constexpr char VariableNotFoundErrorName[] = "VariableNotFoundError";
throw EvaluatorError<VariableNotFoundErrorName>(FStringView(std::format("Variable '{}' not defined", varAssign->varName.toBasicString())), currentAddressInfo);
}
if (!currentContext->isVariableMutable(varAssign->varName))
{
static constexpr char ConstAssignmentErrorName[] = "ConstAssignmentError";
throw EvaluatorError<ConstAssignmentErrorName>(FStringView(std::format("Cannot assign to constant variable '{}'", varAssign->varName.toBasicString())), currentAddressInfo);
}
Value val = eval(varAssign->valueExpr);
if (currentContext->getTypeInfo(varAssign->varName) != ValueType::Any)
{
TypeInfo expectedType = currentContext->getTypeInfo(varAssign->varName);
TypeInfo actualType = val.getTypeInfo();
if (expectedType != actualType)
{
static constexpr char VariableTypeMismatchErrorName[] = "VariableTypeMismatchError";
throw EvaluatorError<VariableTypeMismatchErrorName>(FStringView(std::format("assigning: Variable '{}' expects type '{}', but got type '{}'", varAssign->varName.toBasicString(), expectedType.toString().toBasicString(), actualType.toString().toBasicString())), currentAddressInfo);
}
}
currentContext->set(varAssign->varName, val);
return StatementResult::normal();
};
case AstType::IfSt: {
auto ifSt = std::dynamic_pointer_cast<Ast::IfSt>(stmt);
Value condVal = eval(ifSt->condition);
if (condVal.getTypeInfo() != ValueType::Bool)
{
static constexpr char ConditionTypeErrorName[] = "ConditionTypeError";
throw EvaluatorError<ConditionTypeErrorName>(FStringView(u8"If condition must be boolean"), currentAddressInfo);
}
if (condVal.as<Bool>().getValue())
{
return evalStatement(ifSt->body);
}
// else
for (const auto &elif : ifSt->elifs)
{
Value elifCondVal = eval(elif->condition);
if (elifCondVal.getTypeInfo() != ValueType::Bool)
{
static constexpr char ConditionTypeErrorName[] = "ConditionTypeError";
throw EvaluatorError<ConditionTypeErrorName>(FStringView(u8"Else-if condition must be boolean"), currentAddressInfo);
}
if (elifCondVal.as<Bool>().getValue())
{
return evalStatement(elif->body);
}
}
if (ifSt->els)
{
return evalStatement(ifSt->els->body);
}
return StatementResult::normal();
};
case AstType::WhileSt: {
auto whileSt = std::dynamic_pointer_cast<Ast::WhileSt>(stmt);
while (true)
{
Value condVal = eval(whileSt->condition);
if (condVal.getTypeInfo() != ValueType::Bool)
{
static constexpr char ConditionTypeErrorName[] = "ConditionTypeError";
throw EvaluatorError<ConditionTypeErrorName>(FStringView(u8"While condition must be boolean"), currentAddressInfo);
}
if (!condVal.as<Bool>().getValue())
{
break;
}
StatementResult sr = evalStatement(whileSt->body);
if (sr.shouldReturn())
{
return sr;
}
if (sr.shouldBreak())
{
break;
}
if (sr.shouldContinue())
{
continue;
}
}
return StatementResult::normal();
};
case AstType::ReturnSt: {
if (!currentContext->parent)
{
static constexpr char ReturnOutsideFunctionErrorName[] = "ReturnOutsideFunctionError";
throw EvaluatorError<ReturnOutsideFunctionErrorName>(FStringView(u8"'return' statement outside function"), currentAddressInfo);
}
std::shared_ptr<Context> fc = currentContext;
while (fc->parent)
{
if (fc->getScopeName().find(u8"<Function ") == 0)
{
break;
}
fc = fc->parent;
}
if (fc->getScopeName().find(u8"<Function ") != 0)
{
static constexpr char ReturnOutsideFunctionErrorName[] = "ReturnOutsideFunctionError";
throw EvaluatorError<ReturnOutsideFunctionErrorName>(FStringView(u8"'return' statement outside function"), currentAddressInfo);
}
auto returnSt = std::dynamic_pointer_cast<Ast::ReturnSt>(stmt);
return StatementResult::returnFlow(eval(returnSt->retValue));
};
default:
throw RuntimeError(FStringView(std::string("Unknown statement type:") + magic_enum::enum_name(stmt->getType()).data()));
}
return StatementResult::normal();
}
void Evaluator::run()
{
for (auto ast : asts)
{
currentAddressInfo = ast->getAAI();
if (std::dynamic_pointer_cast<Ast::ExpressionStmtAst>(ast))
{
auto exprAst = std::dynamic_pointer_cast<Ast::ExpressionStmtAst>(ast);
Ast::Expression exp = exprAst->exp;
eval(exp);
}
else if (dynamic_cast<Ast::StatementAst *>(ast.get()))
{
auto stmtAst = std::dynamic_pointer_cast<Ast::StatementAst>(ast);
evalStatement(stmtAst);
}
else
{
throw RuntimeError(FStringView(u8"Unknown AST type"));
}
}
}
void Evaluator::printStackTrace() const
{
if (currentContext)
currentContext->printStackTrace();
else
std::cerr << "[STACK TRACE] (No context has been loaded)\n";
}
} // namespace Fig

524
src/lexer.cpp Normal file
View File

@@ -0,0 +1,524 @@
#include <fig_string.hpp>
#include <error.hpp>
#include <token.hpp>
#include <lexer.hpp>
#include <fig_string.hpp>
#include <utils.hpp>
namespace Fig
{
const std::unordered_map<FString, TokenType> Lexer::symbol_map{
// 双字符
{FString(u8"=="), TokenType::Equal},
{FString(u8"!="), TokenType::NotEqual},
{FString(u8"<="), TokenType::LessEqual},
{FString(u8">="), TokenType::GreaterEqual},
{FString(u8"<<"), TokenType::ShiftLeft},
{FString(u8">>"), TokenType::ShiftRight},
{FString(u8"+="), TokenType::PlusEqual},
{FString(u8"-="), TokenType::MinusEqual},
{FString(u8"*="), TokenType::AsteriskEqual},
{FString(u8"/="), TokenType::SlashEqual},
{FString(u8"%="), TokenType::PercentEqual},
{FString(u8"^="), TokenType::CaretEqual},
{FString(u8"++"), TokenType::DoublePlus},
{FString(u8"--"), TokenType::DoubleMinus},
{FString(u8"&&"), TokenType::DoubleAmpersand},
{FString(u8"||"), TokenType::DoublePipe},
{FString(u8":="), TokenType::Walrus},
{FString(u8"**"), TokenType::Power},
{FString(u8"->"), TokenType::RightArrow},
// 单字符
{FString(u8"+"), TokenType::Plus},
{FString(u8"-"), TokenType::Minus},
{FString(u8"*"), TokenType::Asterisk},
{FString(u8"/"), TokenType::Slash},
{FString(u8"%"), TokenType::Percent},
{FString(u8"^"), TokenType::Caret},
{FString(u8"&"), TokenType::Ampersand},
{FString(u8"|"), TokenType::Pipe},
{FString(u8"~"), TokenType::Tilde},
{FString(u8"="), TokenType::Assign},
{FString(u8"<"), TokenType::Less},
{FString(u8">"), TokenType::Greater},
{FString(u8"."), TokenType::Dot},
{FString(u8","), TokenType::Comma},
{FString(u8":"), TokenType::Colon},
{FString(u8";"), TokenType::Semicolon},
{FString(u8"'"), TokenType::SingleQuote},
{FString(u8"\""), TokenType::DoubleQuote},
{FString(u8"("), TokenType::LeftParen},
{FString(u8")"), TokenType::RightParen},
{FString(u8"["), TokenType::LeftBracket},
{FString(u8"]"), TokenType::RightBracket},
{FString(u8"{"), TokenType::LeftBrace},
{FString(u8"}"), TokenType::RightBrace}};
const std::unordered_map<FString, TokenType> Lexer::keyword_map{
{FString(u8"and"), TokenType::And},
{FString(u8"or"), TokenType::Or},
{FString(u8"not"), TokenType::Not},
{FString(u8"import"), TokenType::Import},
{FString(u8"fun"), TokenType::Function},
{FString(u8"var"), TokenType::Variable},
{FString(u8"const"), TokenType::Const},
{FString(u8"final"), TokenType::Final},
{FString(u8"while"), TokenType::While},
{FString(u8"for"), TokenType::For},
{FString(u8"if"), TokenType::If},
{FString(u8"else"), TokenType::Else},
{FString(u8"struct"), TokenType::Struct},
{FString(u8"interface"), TokenType::Interface},
{FString(u8"implement"), TokenType::Implement},
{FString(u8"public"), TokenType::Public},
{FString(u8"return"), TokenType::Return},
// {FString(u8"Null"), TokenType::TypeNull},
// {FString(u8"Int"), TokenType::TypeInt},
// {FString(u8"String"), TokenType::TypeString},
// {FString(u8"Bool"), TokenType::TypeBool},
// {FString(u8"Double"), TokenType::TypeDouble},
};
void Lexer::skipLine()
{
while (*it != U'\n' and hasNext())
{
next();
}
next(); // skip '\n'
++line;
}
Token Lexer::scanIdentifier()
{
FString identifier;
while (hasNext())
{
UTF8Char c = *it;
if (c.isAlnum() || c == U'_')
{
identifier += c.getString();
next();
}
else
{
break;
}
}
if (this->keyword_map.contains(identifier))
{
return Token(identifier, this->keyword_map.at(identifier));
}
else if (identifier == u8"true" || identifier == u8"false")
{
return Token(identifier, TokenType::LiteralBool);
}
else if (identifier == u8"null")
{
// null instance
return Token(identifier, TokenType::LiteralNull);
}
if (keyword_map.contains(Utils::toLower(identifier)))
{
pushWarning(1, identifier); // Identifier is too similar to a keyword or a primitive type
}
if (identifier.length() <= 1)
{
pushWarning(2, identifier); // The identifier is too abstract
}
return Token(identifier, TokenType::Identifier);
}
Token Lexer::scanString()
{
FString str;
bool unterminated = true;
size_t str_start_col = it.column() - 1;
while (hasNext())
{
UTF8Char c = *it;
if (c == U'"' || c == U'\n')
{
next();
unterminated = false;
break;
}
else if (c == U'\\') // c is '\'
{
if (it.isEnd())
{
error = SyntaxError(u8"Unterminated FString", this->line, it.column());
return IllegalTok;
}
next();
UTF8Char ec = *it;
if (ec == U'n')
{
next();
str += u8"\n";
}
else if (ec == U't')
{
next();
str += u8"\t";
}
else if (ec == U'v')
{
next();
str += u8"\v";
}
else if (ec == U'b')
{
next();
str += u8"\b";
}
else if (ec == U'"')
{
next();
str += u8"\"";
}
else if (ec == U'\'')
{
next();
str += u8"'";
}
else
{
error = SyntaxError(FStringView(
std::format(
"Unsupported escape character: {}",
FString(ec.getString()).toBasicString())),
this->line,
it.column());
return IllegalTok;
}
}
else
{
str += c.getString();
next();
}
}
if (unterminated)
{
error = SyntaxError(u8"Unterminated FString", this->line, str_start_col);
return IllegalTok;
}
return Token(str, TokenType::LiteralString);
}
Token Lexer::scanRawString()
{
FString str;
bool unterminated = true;
size_t str_start_col = it.column() - 1;
while (hasNext())
{
UTF8Char c = *it;
if (c == U'"' || c == U'\n')
{
next();
unterminated = false;
break;
}
else
{
str += c.getString();
next();
}
}
if (unterminated)
{
error = SyntaxError(u8"Unterminated FString", this->line, str_start_col);
return IllegalTok;
}
return Token(str, TokenType::LiteralString);
}
Token Lexer::scanMultilineString()
{
FString str;
bool unterminated = true;
uint8_t end = 0;
size_t str_start_col = it.column() - 1;
while (hasNext())
{
UTF8Char c = *it;
if (c == U'"')
{
if (end == 3)
{
next();
unterminated = false;
break;
}
end++;
next();
continue;
}
else if (c == U'\\') // c is '\'
{
if (it.isEnd())
{
error = SyntaxError(u8"Unterminated FString", this->line, it.column());
return IllegalTok;
}
next();
UTF8Char ec = *it;
if (ec == U'n')
{
next();
str += u8"\n";
}
else if (ec == U't')
{
next();
str += u8"\t";
}
else if (ec == U'v')
{
next();
str += u8"\v";
}
else if (ec == U'b')
{
next();
str += u8"\b";
}
else if (ec == U'"')
{
next();
str += u8"\"";
}
else if (ec == U'\'')
{
next();
str += u8"'";
}
else if (ec == U'\\')
{
next();
str += u8"\\";
}
else
{
error = SyntaxError(FStringView(
std::format(
"Unsupported escape character: {}",
FString(ec.getString()).toBasicString())),
this->line,
it.column());
return IllegalTok;
}
}
else
{
str += c.getString();
}
end = 0;
}
if (unterminated)
{
error = SyntaxError(u8"Unterminated FString", this->line, str_start_col);
return IllegalTok;
}
return Token(str, TokenType::LiteralString);
}
Token Lexer::scanNumber()
{
FString numStr;
bool hasPoint = false;
// 负号(减号) 直接交由 scanSymbol处理在parser中被分类->与数字结合/变为操作数
while (hasNext())
{
UTF8Char ch = *it;
if (ch.isDigit() or ch == U'e') // . / e / - for scientific counting
{
numStr += ch.getString();
next();
}
else if (ch == U'-' and numStr.ends_with(U'-'))
{
numStr += ch.getString();
next();
}
else if (ch == U'.' and not hasPoint)
{
hasPoint = true;
numStr += ch.getString();
next();
}
else
{
break;
}
}
// Numbers in Fig-lang
/*
114514
1145.14
1.14e3 -> 1140
1.14e-3 -> 0.00114
.3 -> 0.3
*/
// checking legality
if ((*numStr.end()) == u'e') // e 后面必须跟整数表示科学计数
{
error = SyntaxError(FStringView(
std::format("Ellegal number literal: {}", numStr.toBasicString())),
this->line, it.column());
return IllegalTok;
}
return Token(numStr, TokenType::LiteralNumber);
}
Token Lexer::scanSymbol()
{
FString sym;
UTF8Char ch = *it;
sym += ch.getString();
UTF8Char peek = UTF8Char(u8"");
if (hasNext() and (peek = it.peek()).isPunct()) // 窥探下一个操作符
{
FString symd = FString(sym + peek.getString());
if (this->symbol_map.contains(symd))
{
// Operator length is 2
next();
sym = symd;
}
// Operator length is 1
else if (!this->symbol_map.contains(sym))
{
// check legality
error = SyntaxError(FStringView(
std::format("No such a operator: {}", sym.toBasicString())),
this->line, it.column());
}
}
next();
return Token(sym, this->symbol_map.at(sym)); // const object 'symbol_map', operator[] call is invalid
}
Token Lexer::scanComments()
{
// entry: when iterator current char is '/' and peek is '/' or '*'
// current char is '/'
FString comment;
if (it.peek() == U'/')
{
next();
next();
UTF8Char c = *it;
while (c != U'\n' and hasNext())
{
comment += c.getString();
next();
}
next();
}
else
{
next();
next();
UTF8Char c = *it;
bool terminated = false;
while (hasNext())
{
if (c == U'*' and hasNext() and it.peek() == U'/')
{
next(); // skip '*'
next(); // skip '/'
next(); // to next char
terminated = true;
break;
}
else
{
comment += c.getString();
next();
}
}
if (!terminated)
{
error = SyntaxError(FStringView(u8"Unterminated multiline comment"), this->line, it.column());
next();
return IllegalTok;
}
}
return Token(comment, TokenType::Comments);
}
Token Lexer::nextToken()
{
if (!hasNext())
{
return EOFTok;
}
UTF8Char ch = *it;
while (ch.isSpace())
{
next();
ch = *it;
if (!hasNext())
{
return EOFTok.setPos(getCurrentLine(), getCurrentColumn());
}
}
last_line = getCurrentLine();
last_column = getCurrentColumn();
if (ch == U'r' and hasNext() and it.peek() == U'"')
{
// r""
// raw FString
next();
next();
return scanRawString().setPos(last_line, last_column);
}
if (ch.isAlpha() || ch == U'_')
{
return scanIdentifier().setPos(last_line, last_column);
}
else if (ch == U'"')
{
next();
return scanString().setPos(last_line, last_column);
}
else if (ch.isDigit())
{
return scanNumber().setPos(last_line, last_column);
}
else if (ch == U'/')
{
UTF8Char c{u8""};
if (!hasNext())
{
next();
return Token(u8"/", this->symbol_map.at(u8"/")).setPos(last_line, last_column);
}
c = it.peek();
if (c != U'/' and c != U'*')
{
next();
return Token(u8"/", this->symbol_map.at(u8"/")).setPos(last_line, last_column);
}
return scanComments().setPos(last_line, last_column);
}
else if (ch.isPunct())
{
return scanSymbol().setPos(last_line, last_column);
}
else
{
error = SyntaxError(FStringView(
std::format("Cannot tokenize char: '{}'", FString(ch.getString()).toBasicString())),
this->line, it.column());
if (hasNext())
{
next();
}
return IllegalTok.setPos(last_line, last_column);
}
}
} // namespace Fig

187
src/main.cpp Normal file
View File

@@ -0,0 +1,187 @@
/*
███████████ █████ █████ ██████████ ███████████ █████ █████████ █████ █████████ ██████ █████ █████████ █████ █████ █████████ █████████ ██████████
░█░░░███░░░█░░███ ░░███ ░░███░░░░░█ ░░███░░░░░░█░░███ ███░░░░░███ ░░███ ███░░░░░███ ░░██████ ░░███ ███░░░░░███░░███ ░░███ ███░░░░░███ ███░░░░░███░░███░░░░░█
░ ░███ ░ ░███ ░███ ░███ █ ░ ░███ █ ░ ░███ ███ ░░░ ░███ ░███ ░███ ░███░███ ░███ ███ ░░░ ░███ ░███ ░███ ░███ ███ ░░░ ░███ █ ░
░███ ░███████████ ░██████ ░███████ ░███ ░███ ░███ ░███████████ ░███░░███░███ ░███ ░███ ░███ ░███████████ ░███ ░██████
░███ ░███░░░░░███ ░███░░█ ░███░░░█ ░███ ░███ █████ ░███ ░███░░░░░███ ░███ ░░██████ ░███ █████ ░███ ░███ ░███░░░░░███ ░███ █████ ░███░░█
░███ ░███ ░███ ░███ ░ █ ░███ ░ ░███ ░░███ ░░███ ░███ █ ░███ ░███ ░███ ░░█████ ░░███ ░░███ ░███ ░███ ░███ ░███ ░░███ ░░███ ░███ ░ █
█████ █████ █████ ██████████ █████ █████ ░░█████████ ███████████ █████ █████ █████ ░░█████ ░░█████████ ░░████████ █████ █████ ░░█████████ ██████████
░░░░░ ░░░░░ ░░░░░ ░░░░░░░░░░ ░░░░░ ░░░░░ ░░░░░░░░░ ░░░░░░░░░░░ ░░░░░ ░░░░░ ░░░░░ ░░░░░ ░░░░░░░░░ ░░░░░░░░ ░░░░░ ░░░░░ ░░░░░░░░░ ░░░░░░░░░░
.---.
. __.....__ .--. | | _..._ __.....__
.'| .-'' '. _.._ |__| .--./) | | .' '. .--./) .--./) .-'' '.
.| < | / .-''"'-. `. .' .._|.--. /.''\\ | | . .-. . /.''\\ /.''\\ / .-''"'-. `.
.' |_ | | / /________\ \ | ' | || | | | | | __ | ' ' || | | | __ | | | |/ /________\ \
.' || | .'''-. | | __| |__ | | \`-' / | | .:--.'. | | | | \`-' / _ _ .:--.'. \`-' / | |
'--. .-'| |/.'''. \\ .-------------' |__ __| | | /("'` | |/ | \ | | | | | /("'` | ' / | / | \ | /("'` \ .-------------'
| | | / | | \ '-.____...---. | | | | \ '---. | |`" __ | | | | | | \ '---. .' | .' | `" __ | | \ '---. \ '-.____...---.
| | | | | | `. .' | | |__| /'""'.\ | | .'.''| | | | | | /'""'.\ / | / | .'.''| | /'""'.\ `. .'
| '.'| | | | `''-...... -' | | || || '---'/ / | |_| | | | || ||| `'. | / / | |_|| || `''-...... -'
| / | '. | '. | | \'. __// \ \._,\ '/| | | | \'. __// ' .'| '/\ \._,\ '/\'. __//
`'-' '---' '---' |_| `'---' `--' `" '--' '--' `'---' `-' `--' `--' `" `'---'
Copyright (C) 2020-2025 PuqiAR
This software is licensed under the MIT License. See LICENSE.txt for details.
*/
#include <argparse/argparse.hpp>
#include <print>
#include <fstream>
#include <core.hpp>
#include <lexer.hpp>
#include <parser.hpp>
#include <evaluator.hpp>
#include <AstPrinter.hpp>
#include <errorLog.hpp>
static size_t addressableErrorCount = 0;
static size_t unaddressableErrorCount = 0;
std::vector<FString> splitSource(FString source)
{
UTF8Iterator it(source);
std::vector<FString> lines;
FString currentLine;
while (!it.isEnd())
{
UTF8Char c = *it;
if (c == U'\n')
{
lines.push_back(currentLine);
currentLine = FString(u8"");
}
else
{
currentLine += c.getString();
}
++it;
}
if (!currentLine.empty())
{
lines.push_back(currentLine);
}
return lines;
}
int main(int argc, char **argv)
{
argparse::ArgumentParser program("Fig Interpreter", Fig::Core::VERSION.data());
program.add_argument("source")
.help("source file to be interpreted");
// interpreter
try
{
program.parse_args(argc, argv);
}
catch (const std::exception &e)
{
std::cerr << e.what() << '\n';
return 1;
}
Fig::FString sourcePath(program.get<std::string>("source"));
std::ifstream file(sourcePath.toBasicString());
if (!file.is_open())
{
std::cerr << "Could not open file: " << sourcePath.toBasicString() << '\n';
return 1;
}
std::string source((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
file.close();
Fig::Lexer lexer((Fig::FString(source)));
Fig::Parser parser(lexer);
std::vector<Fig::Ast::AstBase> ast;
std::vector<FString> sourceLines = splitSource(Fig::FString(source));
try
{
ast = parser.parseAll();
}
catch (const Fig::AddressableError &e)
{
addressableErrorCount++;
ErrorLog::logAddressableError(e, sourcePath, sourceLines);
return 1;
}
catch (const Fig::UnaddressableError &e)
{
unaddressableErrorCount++;
ErrorLog::logUnaddressableError(e);
return 1;
}
catch (const std::exception &e)
{
std::cerr << "uncaught exception of: " << e.what() << '\n';
return 1;
}
// Token tok;
// while ((tok = lexer.nextToken()).getType() != TokenType::EndOfFile)
// {
// std::println("{}", tok.toString().toBasicString());
// }
// AstPrinter printer;
// std::print("<Debug> AST:\n");
// for (const auto &node : ast)
// {
// printer.print(node);
// }
Fig::Evaluator evaluator(ast);
try
{
evaluator.run();
}
catch (const Fig::AddressableError &e)
{
addressableErrorCount++;
ErrorLog::logAddressableError(e, sourcePath, sourceLines);
evaluator.printStackTrace();
return 1;
}
catch (const Fig::UnaddressableError &e)
{
unaddressableErrorCount++;
ErrorLog::logUnaddressableError(e);
evaluator.printStackTrace();
return 1;
}
// try
// {
// std::vector<Fig::Ast> ast = parser.parseAll();
// AstPrinter printer;
// std::print("<Debug> AST:\n");
// for (const auto &node : ast)
// {
// printer.print(node);
// }
// Fig::Evaluator evaluator(ast);
// evaluator.run();
// }
// catch (const Fig::AddressableError &e)
// {
// std::cerr << e.what() << '\n';
// return 1;
// }
// catch (const Fig::UnaddressableError &e)
// {
// std::cerr << e.what() << '\n';
// return 1;
// }
// catch (const std::exception &e)
// {
// std::cerr << e.what() << '\n';
// return 1;
// }
}

848
src/parser.cpp Normal file
View File

@@ -0,0 +1,848 @@
#include <parser.hpp>
namespace Fig
{
// Operator : pair<LeftBindingPower, RightBindingPower>
const std::unordered_map<Ast::Operator, std::pair<Parser::Precedence, Parser::Precedence>> Parser::opPrecedence = {
// 算术
{Ast::Operator::Add, {10, 11}},
{Ast::Operator::Subtract, {10, 11}},
{Ast::Operator::Multiply, {20, 21}},
{Ast::Operator::Divide, {20, 21}},
{Ast::Operator::Modulo, {20, 21}},
{Ast::Operator::Power, {30, 29}},
// 逻辑
{Ast::Operator::And, {5, 6}},
{Ast::Operator::Or, {4, 5}},
{Ast::Operator::Not, {30, 31}}, // 一元
// 比较
{Ast::Operator::Equal, {7, 8}},
{Ast::Operator::NotEqual, {7, 8}},
{Ast::Operator::Less, {8, 9}},
{Ast::Operator::LessEqual, {8, 9}},
{Ast::Operator::Greater, {8, 9}},
{Ast::Operator::GreaterEqual, {8, 9}},
// 位运算
{Ast::Operator::BitAnd, {6, 7}},
{Ast::Operator::BitOr, {4, 5}},
{Ast::Operator::BitXor, {5, 6}},
{Ast::Operator::BitNot, {30, 31}}, // 一元
{Ast::Operator::ShiftLeft, {15, 16}},
{Ast::Operator::ShiftRight, {15, 16}},
// 海象运算符
{Ast::Operator::Walrus, {2, 1}}, // 右结合
// 点运算符
{Ast::Operator::Dot, {40, 41}},
};
Ast::VarDef Parser::__parseVarDef(bool isPublic)
{
// entry: current is keyword `var` or `const`
bool isConst = (currentToken().getType() == TokenType::Const ? true : false);
next();
expect(TokenType::Identifier);
FString name = currentToken().getValue();
next();
FString tiName = ValueType::Any.name;
bool hasSpecificType = false;
if (isThis(TokenType::Colon)) // :
{
expectPeek(TokenType::Identifier, FString(u8"Type name"));
next();
tiName = currentToken().getValue();
next();
hasSpecificType = true;
}
if (isThis(TokenType::Semicolon))
{
next();
return makeAst<Ast::VarDefAst>(isPublic, isConst, name, tiName, nullptr);
}
if (!isThis(TokenType::Assign) and !isThis(TokenType::Walrus)) expect(TokenType::Assign, u8"assign or walrus");
if (isThis(TokenType::Walrus))
{
if (hasSpecificType) throwAddressableError<SyntaxError>(FStringView(u8""));
tiName = Parser::varDefTypeFollowed;
}
next();
Ast::Expression exp = parseExpression(0);
expect(TokenType::Semicolon);
next();
return makeAst<Ast::VarDefAst>(isPublic, isConst, name, tiName, exp);
}
Value Parser::__parseValue()
{
FString _val = currentToken().getValue();
if (currentToken().getType() == TokenType::LiteralNumber)
{
if (_val.contains(u8'.') || _val.contains(u8'e'))
{
// 非整数
ValueType::DoubleClass d;
try
{
d = std::stod(_val.toBasicString());
}
catch (...)
{
throwAddressableError<SyntaxError>(FStringView(u8"Illegal number literal"));
}
return Value(d);
}
else
{
// 整数
ValueType::IntClass i;
try
{
i = std::stoi(_val.toBasicString());
}
catch (...)
{
throwAddressableError<SyntaxError>(FStringView(u8"Illegal number literal"));
}
return Value(i);
}
}
else if (currentToken().getType() == TokenType::LiteralString)
{
return Value(_val);
}
else if (currentToken().getType() == TokenType::LiteralBool)
{
return Value((_val == u8"true" ? true : false));
}
else if (currentToken().getType() == TokenType::LiteralNull)
{
return Value::getNullInstance();
}
else
{
throw std::runtime_error(std::string("Internal Error at: ") + std::string(__func__));
}
}
Ast::ValueExpr Parser::__parseValueExpr()
{
return Ast::ValueExpr(new Ast::ValueExprAst(__parseValue()));
}
Ast::FunctionParameters Parser::__parseFunctionParameters()
{
// entry: current is Token::LeftParen
// stop: current is `)` next one
// *note: must called when parsing function
next(); // skip `(`
Ast::FunctionParameters::PosParasType pp;
Ast::FunctionParameters::DefParasType dp;
while (true)
{
if (isThis(TokenType::RightParen))
{
next();
return Ast::FunctionParameters(pp, dp);
}
expect(TokenType::Identifier, FString(u8"Identifier or `)`")); // check current
FString pname = currentToken().getValue();
next(); // skip pname
if (isThis(TokenType::Assign)) // =
{
next();
dp.push_back({pname, {ValueType::Any.name, parseExpression(0, TokenType::Comma)}});
if (isThis(TokenType::Comma))
{
next(); // only skip `,` when it's there
}
}
else if (isThis(TokenType::Colon)) // :
{
next(); // skip `:`
expect(TokenType::Identifier, FString(u8"Type name"));
FString ti(currentToken().getValue());
next(); // skip type name
if (isThis(TokenType::Assign)) // =
{
next(); // skip `=`
dp.push_back({pname, {ti, parseExpression(0, TokenType::Comma)}});
if (isThis(TokenType::Comma))
{
next(); // only skip `,` when it's there
}
}
else
{
pp.push_back({pname, ti});
if (isThis(TokenType::Comma))
{
next(); // only skip `,` when it's there
}
}
}
else
{
pp.push_back({pname, ValueType::Any.name});
if (isThis(TokenType::Comma))
{
next(); // only skip `,` when it's there
}
}
}
}
Ast::FunctionDef Parser::__parseFunctionDef(bool isPublic)
{
FString funcName = currentToken().getValue();
next();
expect(TokenType::LeftParen);
Ast::FunctionParameters params = __parseFunctionParameters();
FString retTiName = ValueType::Any.name;
if (isThis(TokenType::RightArrow)) // ->
{
next(); // skip `->`
expect(TokenType::Identifier);
retTiName = currentToken().getValue();
next(); // skip return type
}
expect(TokenType::LeftBrace);
Ast::BlockStatement body = __parseBlockStatement();
return makeAst<Ast::FunctionDefSt>(funcName, params, isPublic, retTiName, body);
}
Ast::StructDef Parser::__parseStructDef(bool isPublic)
{
// entry: current is struct name
FString structName = currentToken().getValue();
next();
expect(TokenType::LeftBrace, u8"struct body");
next();
bool braceClosed = false;
/*
public name
public const name
public final name
const name
final name
name
*/
auto __parseStructField = [this](bool isPublic) -> Ast::StructDefField {
AccessModifier am = AccessModifier::Normal;
FString fieldName;
if (isThis(TokenType::Identifier))
{
fieldName = currentToken().getValue();
next();
am = (isPublic ? AccessModifier::Public : AccessModifier::Normal);
}
else if (isThis(TokenType::Final))
{
next();
expect(TokenType::Identifier, u8"field name");
fieldName = currentToken().getValue();
am = (isPublic ? AccessModifier::PublicFinal : AccessModifier::Final);
}
else if (isThis(TokenType::Const))
{
next();
expect(TokenType::Identifier, u8"field name");
fieldName = currentToken().getValue();
am = (isPublic ? AccessModifier::PublicConst : AccessModifier::Const);
}
else
{
throwAddressableError<SyntaxError>(FStringView(std::format("expect field name or field attribute")));
}
FString tiName = ValueType::Any.name;
if (isThis(TokenType::Colon))
{
next();
expect(TokenType::Identifier, u8"type name");
tiName = currentToken().getValue();
next();
}
Ast::Expression initExpr = nullptr;
if (isThis(TokenType::Assign))
{
next();
if (isEOF()) throwAddressableError<SyntaxError>(FStringView(u8"expect an expression"));
initExpr = parseExpression(0);
}
expect(TokenType::Semicolon);
next(); // consume `;`
return Ast::StructDefField(am, fieldName, tiName, initExpr);
};
std::vector<Ast::Statement> stmts;
std::vector<Ast::StructDefField> fields;
while (!isEOF())
{
if (isThis(TokenType::RightBrace))
{
braceClosed = true;
next(); // consume `}`
break;
}
if (isThis(TokenType::Identifier))
{
fields.push_back(__parseStructField(false));
}
else if (isThis(TokenType::Public))
{
if (isNext(TokenType::Const) or isNext(TokenType::Final))
{
next();
fields.push_back(__parseStructField(true));
}
else if (isNext(TokenType::Function))
{
next(); // consume `public`
next(); // consume `function`
stmts.push_back(__parseFunctionDef(true));
}
else if (isNext(TokenType::Struct))
{
next(); // consume `public`
next(); // consume `struct`
stmts.push_back(__parseStructDef(true));
}
else if (isNext(TokenType::Identifier))
{
next(); // consume `public`
fields.push_back(__parseStructField(true));
}
else
{
throwAddressableError<SyntaxError>(FStringView("Invalid syntax"));
}
}
else if (isThis(TokenType::Function))
{
next();
stmts.push_back(__parseFunctionDef(false));
}
else if (isThis(TokenType::Struct))
{
next(); // consume `struct`
stmts.push_back(__parseStructDef(false));
}
else if (isThis(TokenType::Const) or isThis(TokenType::Final))
{
fields.push_back(__parseStructField(false));
}
else if (isThis(TokenType::Variable))
{
throwAddressableError<SyntaxError>(FStringView("Variables are not allowed to be defined within a structure."));
}
else
{
throwAddressableError<SyntaxError>(FStringView("Invalid syntax"));
}
}
if (!braceClosed)
{
throwAddressableError<SyntaxError>(FStringView("braces are not closed"));
}
return makeAst<Ast::StructDefSt>(isPublic, structName, fields, makeAst<Ast::BlockStatementAst>(stmts));
}
Ast::Statement Parser::__parseStatement()
{
Ast::Statement stmt;
if (isThis(TokenType::EndOfFile)) { return makeAst<Ast::EofStmt>(); }
if (isThis(TokenType::Public))
{
// stmt = __parseVarDef();
// expect(TokenType::Semicolon);
// next();
if (isNext(TokenType::Variable) || isNext(TokenType::Const))
{
next(); // consume `public`
stmt = __parseVarDef(true);
}
else if (isNext(TokenType::Function))
{
next(); // consume `public`
expectPeek(TokenType::Identifier);
next();
stmt = __parseFunctionDef(true);
}
else if (isNext(TokenType::Struct))
{
stmt = __parseStructDef(true);
}
else
{
throwAddressableError<SyntaxError>(FStringView(u8"Expected `var`, `const`, `function` or `struct` after `public`"));
}
}
else if (isThis(TokenType::Variable) || isThis(TokenType::Const))
{
stmt = __parseVarDef(false);
}
else if (isThis(TokenType::Function))
{
expectPeek(TokenType::Identifier, u8"function name");
next();
stmt = __parseFunctionDef(false);
}
else if (isThis(TokenType::Struct))
{
expectPeek(TokenType::Identifier, u8"struct name");
next();
stmt = __parseStructDef(false);
}
else if (isThis(TokenType::Identifier) and isNext(TokenType::Assign))
{
FString varName = currentToken().getValue();
next(); // consume identifier
stmt = __parseVarAssign(varName);
}
else if (isThis(TokenType::If))
{
stmt = __parseIf();
}
else if (isThis(TokenType::Else))
{
throwAddressableError<SyntaxError>(FStringView(u8"`else` without matching `if`"));
}
else if (isThis(TokenType::LeftBrace))
{
stmt = __parseBlockStatement();
}
else if (isThis(TokenType::While))
{
stmt = __parseWhile();
}
else if (isThis(TokenType::Return))
{
stmt = __parseReturn();
}
else
{
// expression statement
Ast::Expression exp = parseExpression(0);
expect(TokenType::Semicolon);
next();
stmt = makeAst<Ast::ExpressionStmtAst>(exp);
}
return stmt;
}
Ast::BlockStatement Parser::__parseBlockStatement()
{
// entry: current is `{`
// stop: current is `}` next one
next(); // consume `{`
std::vector<Ast::Statement> stmts;
while (true)
{
if (isThis(TokenType::RightBrace))
{
next();
return makeAst<Ast::BlockStatementAst>(stmts);
}
stmts.push_back(__parseStatement());
}
}
Ast::VarAssign Parser::__parseVarAssign(FString varName)
{
// entry: current is `=`
next(); // consume `=`
Ast::Expression exp = parseExpression(0);
expect(TokenType::Semicolon);
next(); // consume `;`
return makeAst<Ast::VarAssignSt>(varName, exp);
}
Ast::If Parser::__parseIf()
{
// entry: current is `if`
next(); // consume `if`
Ast::Expression condition;
if (isThis( TokenType::LeftParen))
{
next(); // consume `(`
condition = parseExpression(0, TokenType::RightParen);
expect(TokenType::RightParen);
next(); // consume `)`
}
else
{
condition = parseExpression(0);
}
// parenthesis is not required
expect(TokenType::LeftBrace); // {
Ast::BlockStatement body = __parseBlockStatement();
std::vector<Ast::ElseIf> elifs;
Ast::Else els = nullptr;
while (isThis(TokenType::Else))
{
next(); // consume `else`
if (isThis(TokenType::If))
{
// else if
next(); // consume `if`
Ast::Expression elifCondition = parseExpression(0);
expect(TokenType::LeftBrace); // {
Ast::BlockStatement elifBody = __parseBlockStatement();
elifs.push_back(makeAst<Ast::ElseIfSt>(elifCondition, elifBody));
}
else
{
expect(TokenType::LeftBrace); // {
Ast::BlockStatement elseBody = __parseBlockStatement();
els = makeAst<Ast::ElseSt>(elseBody);
break;
}
}
return makeAst<Ast::IfSt>(condition, body, elifs, els);
}
Ast::While Parser::__parseWhile()
{
// entry: current is `while`
next(); // consume `while`
Ast::Expression condition = parseExpression(0);
expect(TokenType::LeftBrace); // {
Ast::BlockStatement body = __parseBlockStatement();
return makeAst<Ast::WhileSt>(condition, body);
}
Ast::Return Parser::__parseReturn()
{
// entry: current is `return`
next(); // consume `return`
Ast::Expression retValue = parseExpression(0);
expect(TokenType::Semicolon);
next(); // consume `;`
return makeAst<Ast::ReturnSt>(retValue);
}
Ast::FunctionCall Parser::__parseFunctionCall(FString funcName)
{
// entry: current at '('
next(); // consume '('
std::vector<Ast::Expression> args;
if (!isThis(TokenType::RightParen))
{
while (true)
{
args.push_back(parseExpression(0, TokenType::Comma, TokenType::RightParen));
if (isThis(TokenType::Comma))
{
next(); // consume ','
continue;
}
break;
}
}
expect(TokenType::RightParen);
next(); // consume ')'
return makeAst<Ast::FunctionCallExpr>(funcName, Ast::FunctionArguments(args));
}
Ast::VarExpr Parser::__parseVarExpr(FString name)
{
return makeAst<Ast::VarExprAst>(name);
}
Ast::LambdaExpr Parser::__parseLambdaExpr()
{
// entry: current tok Token::LeftParen and last is Token::Function
/*
Lambda in Fig like:
fun (params) -> <return type> {...}
*/
Ast::FunctionParameters params = __parseFunctionParameters();
// if OK, the current token is `)` next one
FString tiName = ValueType::Any.name;
if (isThis(TokenType::RightArrow)) // ->
{
next();
expect(TokenType::Identifier);
tiName = currentToken().getValue();
next();
}
expect(TokenType::LeftBrace); // `{`
return makeAst<Ast::LambdaExprAst>(params, tiName, __parseBlockStatement());
}
Ast::UnaryExpr Parser::__parsePrefix(Ast::Operator op, Precedence bp)
{
return makeAst<Ast::UnaryExprAst>(op, parseExpression(bp));
}
Ast::BinaryExpr Parser::__parseInfix(Ast::Expression lhs, Ast::Operator op, Precedence bp)
{
return makeAst<Ast::BinaryExprAst>(lhs, op, parseExpression(bp));
}
Ast::ListExpr Parser::__parseListExpr()
{
// entry: current is `[`
next(); // consume `[`
std::vector<Ast::Expression> val;
while (!isThis(TokenType::RightBracket))
{
val.push_back(parseExpression(0, TokenType::RightBracket, TokenType::Comma));
if (isThis(TokenType::Comma))
{
next(); // consume `,`
}
}
expect(TokenType::RightBracket);
next(); // consume `]`
return makeAst<Ast::ListExprAst>(val);
}
Ast::MapExpr Parser::__parseMapExpr()
{
// entry: current is `{`
next(); // consume `{`
std::map<FString, Ast::Expression> val;
while (!isThis(TokenType::RightBrace))
{
expect(TokenType::Identifier, FString(u8"key (identifier)"));
FString key = currentToken().getValue();
if (val.contains(key)) throwAddressableError<SyntaxError>(FStringView(std::format(
"Redefinition of immutable key {} in mapping literal",
key.toBasicString())));
next(); // consume key
expect(TokenType::Colon);
next(); // consume `:`
val[key] = parseExpression(0, TokenType::RightBrace, TokenType::Comma);
if (isThis(TokenType::Comma))
{
next(); // consume `,`
}
}
expect(TokenType::RightBrace);
next(); // consume `}`
return makeAst<Ast::MapExprAst>(val);
}
Ast::InitExpr Parser::__parseInitExpr(FString structName)
{
// entry: current is `{`
next(); // consume `{`
std::vector<std::pair<FString, Ast::Expression>> args;
/*
3 ways of calling constructor
.1 Person {"Fig", 1, "IDK"};
.2 Person {name: "Fig", age: 1, sex: "IDK"}; // can be unordered
.3 Person {name, age, sex};
*/
uint8_t mode = 0; // 0=undetermined, 1=positional, 2=named, 3=shorthand
while (!isThis(TokenType::RightBrace))
{
if (mode == 0)
{
if (isThis(TokenType::Identifier) && isNext(TokenType::Colon))
{
mode = 2;
}
else if (isThis(TokenType::Identifier) && (isNext(TokenType::Comma) || isNext(TokenType::RightBrace)))
{
mode = 3;
}
else
{
mode = 1;
}
}
if (mode == 1)
{
// 1 Person {"Fig", 1, "IDK"};
Ast::Expression expr = parseExpression(0);
args.push_back({FString(), std::move(expr)});
}
else if (mode == 2)
{
// 2 Person {name: "Fig", age: 1, sex: "IDK"};
expect(TokenType::Identifier);
FString fieldName = currentToken().getValue();
next(); // consume identifier
expect(TokenType::Colon);
next(); // consume colon
Ast::Expression expr = parseExpression(0);
args.push_back({fieldName, std::move(expr)});
}
else if (mode == 3)
{
// 3 Person {name, age, sex};
expect(TokenType::Identifier);
FString fieldName = currentToken().getValue();
Ast::Expression expr = makeAst<Ast::VarExprAst>(fieldName);
args.push_back({fieldName, std::move(expr)});
next(); // consume identifier
}
if (isThis(TokenType::Comma))
{
next(); // consume comma
}
else if (!isThis(TokenType::RightBrace))
{
throwAddressableError<SyntaxError>(u8"Expected comma or right brace");
}
}
expect(TokenType::RightBrace);
next(); // consume `}`
return makeAst<Ast::InitExprAst>(structName, args);
}
Ast::Expression Parser::__parseTupleOrParenExpr()
{
next();
if (currentToken().getType() == TokenType::RightParen)
{
next(); // consume ')'
return makeAst<Ast::TupleExprAst>();
}
Ast::Expression firstExpr = parseExpression(0);
if (currentToken().getType() == TokenType::Comma)
{
std::vector<Ast::Expression> elements;
elements.push_back(firstExpr);
while (currentToken().getType() == TokenType::Comma)
{
next(); // consume ','
if (currentToken().getType() == TokenType::RightParen)
break;
elements.push_back(parseExpression(0));
}
expect(TokenType::RightParen);
next(); // consume ')'
return makeAst<Ast::TupleExprAst>(std::move(elements));
}
else if (currentToken().getType() == TokenType::RightParen)
{
next(); // consume ')'
return firstExpr;
}
else
{
throwAddressableError<SyntaxError>(FStringView(u8"Expect ')' or ',' after expression in parentheses"));
}
return nullptr; // to suppress compiler warning
}
Ast::Expression Parser::parseExpression(Precedence bp, TokenType stop, TokenType stop2)
{
Ast::Expression lhs;
Ast::Operator op;
Token tok = currentToken();
if (tok == EOFTok)
throwAddressableError<SyntaxError>(FStringView(u8"Unexpected end of expression"));
if (tok.getType() == stop || tok.getType() == stop2)
{
if (lhs == nullptr) throwAddressableError<SyntaxError>(FStringView(u8"Expected expression"));
return lhs;
}
if (tok.getType() == TokenType::LeftBracket)
{
lhs = __parseListExpr(); // auto consume
}
else if (tok.getType() == TokenType::LeftParen)
{
lhs = __parseTupleOrParenExpr(); // auto consume
}
else if (tok.getType() == TokenType::LeftBrace)
{
lhs = __parseMapExpr(); // auto consume
}
else if (tok.isLiteral())
{
lhs = __parseValueExpr();
next();
}
else if (tok.isIdentifier())
{
FString id = tok.getValue();
next();
if (currentToken().getType() == TokenType::LeftParen)
{
lhs = __parseFunctionCall(id); // foo(...)
}
else if (currentToken().getType() == TokenType::LeftBrace)
{
lhs = __parseInitExpr(id); // a_struct{init...}
}
else
{
lhs = __parseVarExpr(id);
}
}
else if (isTokenOp(tok) && isOpUnary((op = Ast::TokenToOp.at(tok.getType()))))
{
// prefix
next();
lhs = __parsePrefix(op, getRightBindingPower(op));
}
else
{
throwAddressableError<SyntaxError>(FStringView(u8"Unexpected token in expression"));
}
// infix / (postfix) ?
while (true)
{
tok = currentToken();
if (tok.getType() == TokenType::Semicolon || tok == EOFTok) break;
// ternary
if (tok.getType() == TokenType::Question)
{
next(); // consume ?
Ast::Expression trueExpr = parseExpression(0, TokenType::Colon);
expect(TokenType::Colon);
next(); // consume :
Ast::Expression falseExpr = parseExpression(0, TokenType::Semicolon, stop2);
lhs = makeAst<Ast::TernaryExprAst>(lhs, trueExpr, falseExpr);
continue;
}
if (!isTokenOp(tok)) break;
op = Ast::TokenToOp.at(tok.getType());
Precedence lbp = getLeftBindingPower(op);
if (bp >= lbp) break;
next(); // consume op
lhs = __parseInfix(lhs, op, getRightBindingPower(op));
}
return lhs;
}
std::vector<Ast::AstBase> Parser::parseAll()
{
output.clear();
Token tok = currentToken();
if (tok == EOFTok)
{
return output;
}
// TODO: Package/Module Import Support
while (!isEOF())
{
pushNode(__parseStatement());
}
return output;
}
} // namespace Fig

39
src/value.cpp Normal file
View File

@@ -0,0 +1,39 @@
#include <value.hpp>
// #include <iostream>
namespace Fig
{
std::map<FString, size_t> TypeInfo::typeMap = {};
TypeInfo::TypeInfo() : // only allow use in evaluate time !! <---- dynamic type system requirement
id(1), name(FString(u8"Any")) {}
TypeInfo::TypeInfo(FString _name, bool reg)
{
static size_t id_count = 0;
name = std::move(_name);
// std::cerr << "TypeInfo constructor called for type name: " << name.toBasicString() << "\n";
if (reg)
{
typeMap[name] = ++id_count;
id = id_count;
}
else
{
id = typeMap.at(name); // may throw
}
}
const TypeInfo ValueType::Any(FString(u8"Any"), true); // id: 1
const TypeInfo ValueType::Null(FString(u8"Null"), true); // id: 2
const TypeInfo ValueType::Int(FString(u8"Int"), true); // id: 3
const TypeInfo ValueType::String(FString(u8"String"), true); // id: 4
const TypeInfo ValueType::Bool(FString(u8"Bool"), true); // id: 5
const TypeInfo ValueType::Double(FString(u8"Double"), true); // id: 6
const TypeInfo ValueType::Function(FString(u8"Function"), true); // id: 7
const TypeInfo ValueType::StructType(FString(u8"StructType"), true); // id: 8
const TypeInfo ValueType::StructInstance(FString(u8"StructInstance"), true); // id: 9
const TypeInfo ValueType::List(FString(u8"List"), true); // id: 10
const TypeInfo ValueType::Map(FString(u8"Map"), true); // id: 11
const TypeInfo ValueType::Tuple(FString(u8"Tuple"), true); // id: 12
} // namespace Fig

9
src/waring.cpp Normal file
View File

@@ -0,0 +1,9 @@
#include <warning.hpp>
namespace Fig
{
const std::unordered_map<std::size_t, FString> Warning::standardWarnings = {
{1, FString(u8"Identifier is too similar to a keyword or a primitive type")},
{2, FString(u8"The identifier is too abstract")}
};
};

1
test.fig Normal file
View File

@@ -0,0 +1 @@
var x = 10

21
xmake.lua Normal file
View File

@@ -0,0 +1,21 @@
add_rules("mode.debug", "mode.release")
add_rules("plugin.compile_commands.autoupdate", {outputdir = ".vscode"})
set_policy("run.autobuild", false)
target("Fig")
set_kind("binary")
set_languages("c++2b")
set_plat("mingw")
--set_toolchains("clang")
add_cxxflags("-static")
add_cxxflags("-stdlib=libc++")
add_files("src/*.cpp")
add_includedirs("include")
set_warnings("all")
add_defines("__FCORE_COMPILE_TIME=\"" .. os.date("%Y-%m-%d %H:%M:%S") .. "\"")