
算法 时间(秒) 时间(毫秒) 相对速度

fib (朴素递归) 11.7210479 s 11721.0479 ms 1.00× (基准)

fib_memo (记忆化) 0.0009297 s 0.9297 ms 12,600× 更快

fib_iter (迭代) 0.0003746 s 0.3746 ms 31,300× 更快

fib_tail (尾递归) 0.0004009 s 0.4009 ms 29,200× 更快

Fig 语言性能基准测试报告

版本: 0.4.2-alpha (树遍历解释器)

测试环境

CPU: Intel Core i5-13490F

操作系统: Windows 11

编译器/解释器: Fig 树遍历解释器 v0.4.2-alpha

测试日期: 当前测试执行

执行摘要

本基准测试评估了 Fig 语言中四种不同斐波那契算法实现的性能，计算第30个斐波那契数
（832,040）。结果显示基于算法方法的显著性能差异，突出了解释器的效率特性。

性能结果

原始执行时间

可视化性能对比

朴素递归 : ██ 11.72秒

记忆化递归 : ▉ 0.93毫秒

迭代算法 : ▍ 0.37毫秒

尾递归 : ▎ 0.40毫秒

af://n0
af://n2
af://n3
af://n13
af://n15
af://n16
af://n43
af://n45

详细分析

1. 朴素递归实现 (fib)

时间: 11.721 秒 (11,721 毫秒)

算法复杂度: O(2ⁿ) 指数级

性能说明:

展示了树遍历解释器中重复函数调用的高成本

在仅 n=30 的情况下显示了指数时间复杂度

突出了解释型语言中算法优化的必要性

2. 记忆化递归实现 (fib_memo)

时间: 0.93 毫秒

算法复杂度: O(n) 线性（含记忆化开销）

性能说明:

比朴素递归快 12,600 倍

显示 Fig 中哈希表/字典操作的高效性

证明缓存可以克服解释器开销

3. 迭代实现 (fib_iter)

时间: 0.375 毫秒

算法复杂度: O(n) 线性

性能说明:

最快的实现（比朴素递归快 31,300 倍）

显示高效的循环执行和变量操作

函数调用开销最小

4. 尾递归实现 (fib_tail)

时间: 0.401 毫秒

算法复杂度: O(n) 线性

性能说明:

与迭代方法相当（由于递归开销略慢）

当前解释器未实现尾调用优化（TCO）

显示线性递归在中等深度（n=30）下是高效的

af://n45
af://n46
af://n61
af://n76
af://n91
af://n106

技术洞察

解释器性能特征

1. 函数调用开销: 显著，如朴素递归性能所示

2. 循环效率: 优秀，迭代方法表现最佳

3. 内存访问: 哈希表操作（记忆化）高效

4. 递归深度: 线性递归（尾递归）在中等深度下表现良好

算法影响

基准测试清楚地表明，在此版本中，算法选择比解释器优化影响更大：

差算法（朴素递归）：11.7 秒

好算法（任何 O(n) 方法）：< 1 毫秒

版本特定观察 (v0.4.2-alpha)

优势

迭代算法性能优秀

基本操作（算术、循环、条件判断）高效

缓存结果的内存访问模式有效

线性递归性能在典型用例中可接受

改进空间

深度递归场景中函数调用开销高

未实现尾调用优化

指数算法性能显示解释器限制

给开发者的建议
1. 性能关键代码优先使用迭代解决方案

2. 对于有重叠子问题的递归问题使用记忆化

3. 线性递归模式可接受尾递归

4. 避免在解释型代码中使用指数算法

5. 基准测试不同方法，因为算法选择主导性能

af://n106
af://n107
af://n117
af://n124
af://n125
af://n135
af://n143
af://n155

结论
Fig v0.4.2-alpha 展示了对设计良好的算法的实用性能。虽然树遍历解释器对某些模式（如深
度递归）有固有开销，但它能以亚毫秒性能执行高效的 O(n) 算法（n=30时）。

解释器在以下方面表现特别出色：

迭代循环执行

基本算术和控制流

用于缓存的字典/表操作

性能特征适用于广泛的应用领域，前提是开发者采用标准的算法优化技术。

报告生成时间: 基于实际基准测试执行
解释器类型: 树遍历解释器
版本: 0.4.2-alpha
关键要点: 算法效率主导性能；尽管 Fig 是 alpha 阶段的树遍历解释器，但它能高效执行优化
算法。

af://n155

	Fig 语言性能基准测试报告
	版本: 0.4.2-alpha (树遍历解释器)
	测试环境
	执行摘要

	性能结果
	原始执行时间
	可视化性能对比

	详细分析
	1. 朴素递归实现 (fib)
	2. 记忆化递归实现 (fib_memo)
	3. 迭代实现 (fib_iter)
	4. 尾递归实现 (fib_tail)

	技术洞察
	解释器性能特征
	算法影响

	版本特定观察 (v0.4.2-alpha)
	优势
	改进空间

	给开发者的建议
	结论

