
Algorithm Time (s) Time (ms) Relative Speed

fib (Naive Recursion) 5.471 s 5471.37 ms 1.00× (baseline)

fib_memo (Memoization) 0.0005503 s 0.5503 ms 9,950× faster

fib_iter (Iterative) 0.0001004 s 0.1004 ms 54,500× faster

fib_tail (Tail Recursion) 0.0001573 s 0.1573 ms 34,800× faster

Fig Language Performance Benchmark Report

Version: 0.4.3-alpha (Tree Traversal Interpreter)

Preface

This report presents benchmark tests of Fibonacci algorithms in Fig v0.4.3-alpha tree traversal
interpreter, compared with version 0.4.2-alpha. Results show significant performance
improvements in function calls, loops, and recursion optimizations in 0.4.3-alpha, especially
in iterative and tail-recursive implementations.

Test Environment

CPU: Intel Core i5-13490F

Operating System: Windows 11

Interpreter: Fig Tree Traversal Interpreter v0.4.3-alpha

Test Date: Current execution

Executive Summary

This benchmark evaluates four different Fibonacci algorithm implementations in Fig,
computing the 30th Fibonacci number (832,040). Algorithm choice remains the dominant
factor for performance, while interpreter improvements in function call and loop efficiency are
also reflected.

Performance Results

Latest Floating Execution Time (0.4.3-alpha)

af://n0
af://n2
af://n3
af://n5
af://n15
af://n17
af://n18

Algorithm 0.4.2-alpha Time 0.4.3-alpha Time Performance Gain

fib (Naive Recursion) 11.721 s 5.471 s ~2.14×

fib_memo (Memoization) 0.930 ms 0.550 ms ~1.69×

fib_iter (Iterative) 0.375 ms 0.100 ms ~3.73×

fib_tail (Tail Recursion) 0.401 ms 0.157 ms ~2.55×

Algorithm Performance Comparison

fib 11.72 s
 5.47 s

fib_memo 0.93 ms
 0.55 ms

fib_iter 0.375 ms
 0.100 ms

fib_tail 0.401 ms
 0.157 ms

Comparison with 0.4.2-alpha

Visual Performance Comparison (Horizontal Bar Placeholder)

0.4.2-alpha vs 0.4.3-alpha

Note: Each line contains two bars: gray for 0.4.2-alpha, blue for 0.4.3-alpha

Detailed Analysis

1. Naive Recursion (fib)

Time: 5.471 seconds (5471 ms)

Algorithm Complexity: O(2ⁿ) exponential

Performance Notes:

af://n45
af://n73
af://n83
af://n84

Reduced by roughly half compared to 0.4.2-alpha

Function call overhead optimization effective, but exponential growth remains the
bottleneck

2. Memoized Recursion (fib_memo)

Time: 0.550 ms

Algorithm Complexity: O(n) linear

Performance Notes:

Hash table / cache access efficiency improved

Sub-millisecond execution suitable for overlapping subproblems

3. Iterative (fib_iter)

Time: 0.100 ms

Algorithm Complexity: O(n) linear

Performance Notes:

Fastest implementation, ~3.7× improvement over 0.4.2-alpha

Loop and arithmetic operation optimization significant

4. Tail Recursion (fib_tail)

Time: 0.157 ms

Algorithm Complexity: O(n) linear

Performance Notes:

Slightly slower than iterative, ~2.5× improvement over 0.4.2-alpha

Tree traversal interpreter optimizations for recursion effective; TCO not
implemented

Technical Insights

Function call overhead significantly reduced

Loop and arithmetic operations show greatest efficiency gains

Hash table / cache access highly efficient

Algorithm choice remains the dominant factor for performance

af://n97
af://n110
af://n123
af://n137

Recommendations for Developers

1. Prioritize iterative solutions for performance-critical code

2. Use memoization for recursion with overlapping subproblems

3. Tail recursion is suitable for moderate depth, but TCO is not implemented

4. Avoid exponential algorithms in interpreted code

5. Benchmark different implementations, as algorithm choice dominates performance

Conclusion

Fig v0.4.3-alpha tree traversal interpreter shows significant improvements in function call and
loop optimizations, particularly benefiting iterative and tail-recursive implementations.
O(n) algorithms execute at sub-millisecond speeds, while exponential recursion remains
limited. Overall interpreter performance is adequate for practical applications.

Report Generated: Based on actual benchmark execution
Interpreter Type: Tree Traversal Interpreter
Version: 0.4.3-alpha

af://n148
af://n161

	Fig Language Performance Benchmark Report
	Version: 0.4.3-alpha (Tree Traversal Interpreter)
	Preface
	Test Environment
	Executive Summary

	Performance Results
	Latest Floating Execution Time (0.4.3-alpha)
	Comparison with 0.4.2-alpha

	Visual Performance Comparison (Horizontal Bar Placeholder)
	Detailed Analysis
	1. Naive Recursion (fib)
	2. Memoized Recursion (fib_memo)
	3. Iterative (fib_iter)
	4. Tail Recursion (fib_tail)

	Technical Insights
	Recommendations for Developers
	Conclusion

