
Algorithm
Time
(seconds)

Time
(milliseconds)

Relative
Speed

fib (Naive Recursion) 11.7210479 s 11721.0479 ms 1.00×
(baseline)

fib_memo
(Memoization)

0.0009297 s 0.9297 ms 12,600× faster

fib_iter (Iterative) 0.0003746 s 0.3746 ms 31,300× faster

fib_tail (Tail
Recursion)

0.0004009 s 0.4009 ms 29,200×
faster

Fig Language Performance
Benchmark Report

Version: 0.4.2-alpha (Tree-walker Interpreter)

Test Environment

CPU: Intel Core i5-13490F

OS: Windows 11

Compiler/Interpreter: Fig Tree-walker v0.4.2-alpha

Test Date: Current test execution

Executive Summary

This benchmark evaluates the performance of four different Fibonacci algorithm
implementations in Fig language, calculating the 30th Fibonacci number (832,040).
The results demonstrate significant performance variations based on algorithmic
approach, highlighting the interpreter's efficiency characteristics.

Performance Results

Raw Execution Times

af://n0
af://n2
af://n3
af://n13
af://n15
af://n16
af://n43

Visual Performance Comparison

Detailed Analysis

1. Naive Recursive Implementation (fib)

Time: 11.721 seconds (11,721 ms)

Algorithm Complexity: O(2ⁿ) exponential

Performance Notes:

Demonstrates the high cost of repeated function calls in tree-walker
interpreters

Shows exponential time complexity with just n=30

Highlights the need for algorithmic optimization in interpreted languages

2. Memoized Recursive Implementation (fib_memo)

Time: 0.93 milliseconds

Algorithm Complexity: O(n) linear (with memoization overhead)

Performance Notes:

12,600× speedup over naive recursion

Shows efficient hash table/dictionary operations in Fig

Demonstrates that caching can overcome interpreter overhead

3. Iterative Implementation (fib_iter)

Time: 0.375 milliseconds

Algorithm Complexity: O(n) linear

Performance Notes:

Fastest implementation (31,300× faster than naive)

Shows efficient loop execution and variable operations

Minimal function call overhead

Naive Recursion : ██ 11.72s

Memoization : ▉ 0.93ms

Iteration : ▍ 0.37ms

Tail Recursion : ▎ 0.40ms

af://n43
af://n45
af://n46
af://n61
af://n76
af://n91

4. Tail Recursive Implementation (fib_tail)

Time: 0.401 milliseconds

Algorithm Complexity: O(n) linear

Performance Notes:

Comparable to iterative approach (slightly slower due to recursion
overhead)

Current interpreter does not implement Tail Call Optimization (TCO)

Shows linear recursion is efficient for moderate depths (n=30)

Technical Insights

Interpreter Performance Characteristics

1. Function Call Overhead: Significant, as shown by the naive recursion
performance

2. Loop Efficiency: Excellent, with iterative approaches performing best

3. Memory Access: Hash table operations (memoization) are efficient

4. Recursion Depth: Linear recursion (tail recursion) performs well up to
moderate depths

Algorithmic Impact

The benchmark clearly demonstrates that algorithm choice has a greater impact
than interpreter optimization in this version:

Poor algorithm (naive recursion): 11.7 seconds

Good algorithm (any O(n) approach): < 1 millisecond

Version-Specific Observations (v0.4.2-alpha)

Strengths

Excellent performance for iterative algorithms

Efficient basic operations (arithmetic, loops, conditionals)

Effective memory access patterns for cached results

Linear recursion performance acceptable for typical use cases

af://n91
af://n106
af://n107
af://n117
af://n124
af://n125
af://n135

Areas for Improvement

High function call overhead in deeply recursive scenarios

No tail call optimization implemented

Exponential algorithm performance shows interpreter limits

Recommendations for Developers

1. Prefer iterative solutions for performance-critical code

2. Use memoization for recursive problems with overlapping subproblems

3. Tail recursion is acceptable for linear recursion patterns

4. Avoid exponential algorithms in interpreted code

5. Benchmark different approaches as algorithmic choice dominates performance

Conclusion
Fig v0.4.2-alpha demonstrates practical performance for well-designed algorithms.
While the tree-walker interpreter has inherent overhead for certain patterns (like
deep recursion), it executes efficient O(n) algorithms with sub-millisecond
performance for n=30.

The interpreter shows particular strength in:

Iterative loop execution

Basic arithmetic and control flow

Dictionary/table operations for caching

The performance characteristics are suitable for a wide range of application domains,
provided developers employ standard algorithmic optimization techniques.

Report Generated: Based on actual benchmark execution
Interpreter Type: Tree-walker
Version: 0.4.2-alpha
Key Takeaway: Algorithmic efficiency dominates performance; Fig executes
optimized algorithms efficiently despite being an alpha-stage tree-walker
interpreter.

af://n135
af://n143
af://n155

	Fig Language Performance Benchmark Report
	Version: 0.4.2-alpha (Tree-walker Interpreter)
	Test Environment
	Executive Summary

	Performance Results
	Raw Execution Times
	Visual Performance Comparison

	Detailed Analysis
	1. Naive Recursive Implementation (fib)
	2. Memoized Recursive Implementation (fib_memo)
	3. Iterative Implementation (fib_iter)
	4. Tail Recursive Implementation (fib_tail)

	Technical Insights
	Interpreter Performance Characteristics
	Algorithmic Impact

	Version-Specific Observations (v0.4.2-alpha)
	Strengths
	Areas for Improvement

	Recommendations for Developers
	Conclusion

