Fig Language Performance
Benchmark Report

Version: 0.4.2-alpha (Tree-walker Interpreter)

Test Environment

e CPU: Intel Core i5-13490F
e 0S: Windows 11
e Compiler/Interpreter: Fig Tree-walker v0.4.2-alpha

o Test Date: Current test execution

Executive Summary

This benchmark evaluates the performance of four different Fibonacci algorithm
implementations in Fig language, calculating the 30th Fibonacci number (832,040).
The results demonstrate significant performance variations based on algorithmic
approach, highlighting the interpreter's efficiency characteristics.

Performance Results

Raw Execution Times

Time Time Relative
Algorithm (seconds) (milliseconds) Speed
fib (Naive Recursion) 11.7210479 S 11721.0479 ms 1.00x

(baseline)

fib memo 0.0009297 S 0.9297 ms 12,600x faster
(Memoization)
fib iter (Iterative) 0.0003746 S 0.3746 ms 31,300x faster
fib tail (Tail 0.0004009 s 0.4009 mS 29,200x

Recursion) faster


af://n0
af://n2
af://n3
af://n13
af://n15
af://n16
af://n43

Visual Performance Comparison

Naive Recursion : [EEEEEEEEE (.72

Memoization : [l 0.93ms
Iteration : 1 0.37ms
Tail Recursion : 1 0.40ms

Detailed Analysis

1. Naive Recursive Implementation (£ ib)

e Time: 11.721 seconds (11,721 ms)
 Algorithm Complexity: O(2) exponential
e Performance Notes:

o Demonstrates the high cost of repeated function calls in tree-walker
interpreters

o Shows exponential time complexity with just n=30

o Highlights the need for algorithmic optimization in interpreted languages

2. Memoized Recursive Implementation (fib memo)

e Time: 0.93 milliseconds
 Algorithm Complexity: O(n) linear (with memoization overhead)
e Performance Notes:

o 12,600x speedup over naive recursion

o Shows efficient hash table/dictionary operations in Fig

o Demonstrates that caching can overcome interpreter overhead

3. Iterative Implementation (fib iter)

e Time: 0.375 milliseconds
o Algorithm Complexity: O(n) linear
» Performance Notes:
o Fastest implementation (31,300x faster than naive)
o Shows efficient loop execution and variable operations

o Minimal function call overhead


af://n43
af://n45
af://n46
af://n61
af://n76
af://n91

4. Tail Recursive Implementation (fib tail)

e Time: 0.401 milliseconds
e Algorithm Complexity: O(n) linear
e Performance Notes:

o Comparable to iterative approach (slightly slower due to recursion
overhead)

o Current interpreter does not implement Tail Call Optimization (TCO)

o Shows linear recursion is efficient for moderate depths (n=30)

Technical Insights

Interpreter Performance Characteristics
1. Function Call Overhead: Significant, as shown by the naive recursion
performance
2. Loop Efficiency: Excellent, with iterative approaches performing best
3. Memory Access: Hash table operations (memoization) are efficient

4. Recursion Depth: Linear recursion (tail recursion) performs well up to
moderate depths

Algorithmic Impact

The benchmark clearly demonstrates that algorithm choice has a greater impact
than interpreter optimization in this version:

¢ Poor algorithm (naive recursion): 11.7 seconds

¢ Good algorithm (any O(n) approach): < 1 millisecond

Version-Specific Observations (v0.4.2-alpha)

Strengths

o Excellent performance for iterative algorithms
 Efficient basic operations (arithmetic, loops, conditionals)
» Effective memory access patterns for cached results

 Linear recursion performance acceptable for typical use cases


af://n91
af://n106
af://n107
af://n117
af://n124
af://n125
af://n135

Areas for Improvement

¢ High function call overhead in deeply recursive scenarios
e No tail call optimization implemented

« Exponential algorithm performance shows interpreter limits

Recommendations for Developers

1. Prefer iterative solutions for performance-critical code

2. Use memoization for recursive problems with overlapping subproblems
3. Tail recursion is acceptable for linear recursion patterns

4. Avoid exponential algorithms in interpreted code

5. Benchmark different approaches as algorithmic choice dominates performance

Conclusion

Fig vo.4.2-alpha demonstrates practical performance for well-designed algorithms.
While the tree-walker interpreter has inherent overhead for certain patterns (like
deep recursion), it executes efficient O(n) algorithms with sub-millisecond
performance for n=30.

The interpreter shows particular strength in:

o [terative loop execution
 Basic arithmetic and control flow
¢ Dictionary/table operations for caching

The performance characteristics are suitable for a wide range of application domains,
provided developers employ standard algorithmic optimization techniques.

Report Generated: Based on actual benchmark execution

Interpreter Type: Tree-walker

Version: 0.4.2-alpha

Key Takeaway: Algorithmic efficiency dominates performance; Fig executes
optimized algorithms efficiently despite being an alpha-stage tree-walker
interpreter.


af://n135
af://n143
af://n155

	Fig Language Performance Benchmark Report
	Version: 0.4.2-alpha (Tree-walker Interpreter)
	Test Environment
	Executive Summary

	Performance Results
	Raw Execution Times
	Visual Performance Comparison

	Detailed Analysis
	1. Naive Recursive Implementation (fib)
	2. Memoized Recursive Implementation (fib_memo)
	3. Iterative Implementation (fib_iter)
	4. Tail Recursive Implementation (fib_tail)

	Technical Insights
	Interpreter Performance Characteristics
	Algorithmic Impact

	Version-Specific Observations (v0.4.2-alpha)
	Strengths
	Areas for Improvement

	Recommendations for Developers
	Conclusion


